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Abstract
In this research, we study the fulfillment strategies adopted by an omnichannel re-
tailer in the post-pandemic context of a rapidly expanding e-commerce enterprise.
The overarching goal is to identify what factors and circumstances influence the re-
tailer’s optimal fulfillment strategies, how the retailer should allocate resources be-
tween different fulfillment channels to maximize its profit, and how the fulfillment
decisions affect traffic in road networks. To this end, we develop, analyze and test
a stylized model of omnichannel retail in three phases, of which the first two are
included in this report. In the first, a base model considering a retailer that owns a
large distribution center and a front-end store with limited space. The customers are
assumed to be homogeneous, and given three channels to choose from: in-store, online
with membership (which promises express delivery), and online without membership.
The retailer seeks to jointly optimize the inventory in the store, price differentiation
across channels, and express delivery capacity while anticipating the uncertainty in
the total demand for different channels. In the second phase, the base model is ex-
tended to accommodate customers’ heterogeneous channel preferences by considering
the channel-specific hassle costs as random variables that follow a joint distribution.
For each model developed, we first perform theoretical analysis to generate useful
insights. Numerical experiments are then conducted on a 1/3000 model of a retailer
similar in scale to Amazon and Walmart, to validate the models and test their sensi-
tivity to key parameters. Our main findings so far are summarized as follows. (i) For
the base model, the optimal solution is always an all-or-nothing distribution, since the
retailer will always adjust the fulfillment decisions so that the channel with greater
intrinsic profitability becomes the dominant channel; (ii) Providing inventory infor-
mation may reduce the profit when the cross-sale profit is smaller than the direct
sales profit; (iii) A minimum cross-sale profit (about 10% of the revenues from direct
sales) would make the in-store channel an attractive option for the retailer; (iv) For
a retailer with a strong preference for the offline channel, a lower online order return
rate can hurt its profit; (v) A higher fuel price will reduce the appeal of the in-store
channel because customers must bear a higher cost when visiting the store. Interest-
ingly, the retailer will respond to a fuel price surge by charging less, not more, for
the same-delivery membership.
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CHAPTER1
Introduction

1.1 Background
The COVID-19 global pandemic had a profound impact on a wide range of human
activities. In the United States (U.S.), a significant portion of the population had
worked and studied at home for an extended period of time due to lockdown orders.
Even though shopping, considered an essential service, had never been restricted,
many Americans voluntarily forwent their regular trips to physical stores out of safety
concerns, in favor of online shopping. Not surprisingly, this behavioral change resulted
in an incredible growth spurt for e-commerce. According to the U.S. Department of
Commerce1, the total e-commerce sales in the first quarter of 2022 were $250 billion,
a 15.34% increase compared to the first quarter of 2021, and a 122.04% increase from
the first quarter of 2020. They accounted for 14.3% of the total retail sales in the
U.S., compared to 11.7% in the same period of 2020.

Amazon, the quintessential online retailer, is among the clear beneficiary of the
pandemic. In the first quarter of 2021, Amazon recorded a 44% year-over-year growth
in the revenue and 220% growth in the profit2. In 2019, the share of the U.S. house-
holds total spending with Amazon was 2.4% (that is, for every $100 U.S. households
spent that year, $2.4 went to Amazon). This number jumped to 3.3% in 2020 and
then to 3.6% in 20213. In contrast, Walmart’s share of the U.S. households’ total
spending rose only 0.2 percentage points during the same period, from 2.8% in 2019
to 3.0% in 2021. It is worth noting Walmart is by no means a “traditional” brick-and-
mortar retailer, though the lion’s shares of its revenues still come from the sales in
physical stores. It has invested heavily and gained a growing footprint in e-commerce.
In the first three quarters of 2021, Walmart took 6.6% of all online sales in the U.S.,
next only to Amazon’s 41%4.

Evidence began to emerge that suggests some pandemic-induced changes in hu-
man behaviors might stick. Of the thousands of consumers responding to a survey
conducted by the EY Future Consumer Index in 20215, 40% state they will be “less

1https://www.census.gov/retail/index.html
2https://www.businesswire.com/news/home/20210429006037/en/Amazon.com-Announces-

First-Quarter-Results
3https://www.pymnts.com/opinion/2022/the-opportunity-in-offering-banks-a-bnpl-path/
4https://www.statista.com/statistics/274255/market-share-of-the-leading-retailers-in-us-e-

commerce/.
5https://www.ey.com/en_us/consumer-products-retail/future-consumer-index-cycle-6-how-a-
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inclined to be involved in experiences outside the home” in the future. 60% respon-
dents were still visiting brick-and-mortar stores less at the time of the survey, despite
reopening was in full swing through much of 2021. Moreover, 43% thought they will
shop more often online for the products they previously bought in stores.

Any retailer who sees the writing on the wall knows their survival in the fu-
ture depends on the creation of an omnichannel shopping experience that transcends
the boundaries of conventional online/offline channels. There is no doubt that e-
commerce has given birth to omnichannel retail and will continue to drive its growth
in the years to come. That does not mean, however, the in-store shopping experience
is bound to fade into oblivion. Physical stores still account for the vast majority of
U.S. retail sales, especially in product categories like food and beverage (93%) and
health and personal care (89%)6. Little wonder, then, as the brick-and-mortar retail-
ers try to break through e-commerce barriers, Amazon has been aggressively pushing
in the opposite direction. As of 2022, Amazon operates over 600 physical stores in
North America, including more than 500 Whole Foods locations, Amazon Fresh (gro-
cery), Amazon Go (cashier-less convenience stores), and recently launched Amazon
Style (apparel).

Physical stores appeal to shoppers by allowing them to touch, feel and even
try products, a unique experience that cannot be easily replaced or imitated by e-
commerce. Moreover, large physical stores provide opportunities to enrich and diver-
sify one’s choice of channels through which orders can be fulfilled. This competitive
edge came in handy when the pandemic dramatically tightens up labor markets and
squeezes supply chains everywhere. The retailers such as Walmart and Target dis-
covered their large number of physical stores allowing them to quickly scale up novel,
pandemic-friendly fulfillment channels such as buy-online-pick-up-in-store (BOPS)
and buy-online-drive-up-to-curbside (BODUC). Consumers who are wary of infection
risks but intolerant of long delays find these options especially attractive. Physical
stores do not just reduce the delivery demand. They can also speed up same-day
or faster delivery, often hailed as the Holy Grail for a positive consumer experience
in e-commerce. The high density of these stores and their proximity to consumers
relative to Amazon-style fulfillment centers promise shorter delivery distance per or-
der, less wait time for consumers, and ultimately lower operating costs. Hitherto
Amazon’s supply chain management and delivery capability appear to have kept up
with its growing business reasonably well, without using physical stores as “front-end”
warehouses. This was accomplished in part by working with thousands of delivery
service providers who collectively hired hundreds of thousands of drivers dedicated
to package delivery7. However, even a delivery workforce of this size can fall short
sometimes. In fact, the share of Amazon orders arriving late jumped more than 4
percentage points (from 11.4% to 15.9%) after the pandemic demand surge set in8. A

year-of-pandemic-changed-consumers
6https://www.emarketer.com/content/why-amazon-keeps-experimenting-with-physical-stores
7By the end of 2021, Amazon reportedly employs a quarter million couriers through 3000

providers, see https://www.cnn.com/2021/12/21/tech/amazon-delivery-night/index.html.
8https://www.statista.com/statistics/1220033/share-of-amazon-orders-arriving-late/
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relevant question is which fulfillment strategy – placing inventory in front-end ware-
houses so that delivery can be initiated from there, or hiring an army of drivers to
deliver directly from the fulfillment centers – is more efficient, and under what cir-
cumstances. The answer to this question may play a crucial role in shaping the future
landscape of omnichannel retail, as the key players are contemplating the next move
to retain or grow their market shares.

The shift to omnichannel retail places the emphasis squarely on consumer experi-
ence. As Balis [Bal21] put it, “Old truth: You are competing with your competitors.
New truth: You are competing with the last best experience your customer had”.
However, the laser focus on customer experience may be at odds with other pressing
societal priorities. Notably, the “click-to-instant-deliver” experience made possible
by the membership-based express delivery service such as Amazon Prime and Wal-
mart Plus is extremely popular among customers, but it also forces the retailer to
make multiple trips to a customer’s home, often by large trucks, to deliver what can
be bought in a single trip to a store by a passenger sedan. This shopping habit,
once adopted by millions of Americans, could considerably increase the vehicle miles
traveled (VMT), hence greenhouse gas emissions, contributed by the retail sector.

Interestingly, early studies [MHS01; EMC10] have concluded e-commerce tends
to have a benign impact on the environment. For example, Edwards, Mckinnon, and
Cullinane [EMC10] found e-commerce’s home delivery operation is likely to generate
less CO2 emissions than an equivalent shopping trip. However, today’s retail industry
is very different from the early 2000s, when few had the expectation of receiving any
online orders within a couple of days, let alone on the same day. A recent report
by the Texas A&M Transportation Institute9 anticipates the potential traffic impact
of e-commerce growth in three areas: (i) regulating the use of personal vehicles by
people acting as independent delivery contractors is difficult; (ii) the growth in ur-
ban logistics facility near or within urban centers may add additional traffic to road
networks; and (iii) the increasing demand for express delivery may bring additional
traffic to residential areas during off-peak periods. Clearly, delivery-induced traf-
fic has become a concern for transportation planners, operators, and policymakers.
However, whereas e-commerce generates more delivery trips, on the one hand, it also
reduces the number of personal shopping trips on the other. The rise of omnichannel
retail, especially the new fulfillment channels such as BOPS and BODUC, complicates
the picture further because it seeks to balance customer volume between fulfillment
channels that have different traffic implications. Taken together, it remains an open
question whether and how the continual evolution of omnichannel retail will disrupt
the operation of surface transportation infrastructure. A related question is what
policies can be implemented to mitigate this impact.

9https://policy.tti.tamu.edu/freight/how-will-e-commerce-growth-impact-our-transportation-
network/
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1.2 Overview
To recapitulate, this research is primarily motivated by the following questions that
arise at the nexus of omnichannel retail and transportation.

1. What are the factors and circumstances that influence the retailer’s optimal
fulfillment strategy?

2. How should an omnichannel retailer allocate resources between different ful-
fillment channels to maximize its profit, while anticipating customers’ channel
choice preferences?

3. Will the fulfillment strategies adopted by the retailer have a significant traffic
impact? If so, are there any ways to mitigate it from the policy point of view?

We will focus on the first two questions in this report, and leave the third to the next
phase of this research.

We propose a theoretical approach that centers on a stylized parsimonious model
of omnichannel retail. The full-fledged model will be developed in three sequential
phases, though only the first two phases are covered in this report.

The first phase creates a base model that is complex enough to differentiate the
most important fulfillment channels, but still simple enough to render useful insights.
The model considers a retailer that owns a large distribution center and a front-end
store with limited space. The store can either provide traditional in-store shopping,
uses its space to fulfill online orders, or do both. The retailer can also fulfill online or-
ders from the distribution center, either through a membership-based express service
or a regular delivery service. As a starting point, customers are assumed to be homo-
geneous, and given three channels to choose from: in-store, online with membership
(which promises express delivery), and online without membership. The customer
choice depends on the utility of each channel, which is a function of the ratio be-
tween the number of users and the “capacity” of that channel. Thus, a fulfillment
channel can be “congested” in the model the same way as a road can be congested
by an excessive amount of traffic. The retailer’s fulfillment strategy consists of three
types of decisions: inventory in the store; price differentiation across channels; and
express delivery capacity. In making these decisions, the retailer must anticipate the
uncertainty in the total demand, which follows a random distribution, and the split
of customers across different channels, which settles at a Nash equilibrium of a con-
gestion game played by identical customers. Thus, the base model may be viewed as
a Stackleberg congestion game.

In the second phase, the base model will be extended to accommodate customers’
heterogeneous channel preferences. Specifically, we choose to model channel-specific
hassle costs as random variables that follow a joint distribution, from which the
demand density can be derived for any given vector of hassle costs. This extension re-
quires a rather different analysis, especially for the consumers’ channel choice. Instead
of deriving the channel choice according to Nash equilibrium, this model determines
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it according to the specification of heterogeneity. Due to the complex interactions
between fulfillment decisions and channel choice in this case, however, the model is
not particularly amenable to analysis, except for highly simplified versions.

The third and future phase will attempt to connect channel heterogeneity to
customers’ home locations, thus adding a spatial structure into the model. With this
feature, we propose to specify the retailer’s delivery operations with greater details,
which will enable us to track the total vehicle miles traveled in the system. The base
model assumes the retailer only sells one genetic product. In this phase, we will also
relax the above assumptions by allowing the retailer to carry more than one product
and tailor fulfillment strategies to each product.

To test the proposed model and generate managerial insights, case studies will be
constructed using publicly available empirical data wherever possible. By designing
and experimenting with counterfactual scenarios, we will seek answers to the first two
research questions posed at the beginning of this section.

1.3 Organization of the report
The remainder of this report is organized as follows. Chapter two reviews related
studies, focusing on omnichannel retail, channel conflict management, and the impact
of e-commerce on the transpiration system.

The main results are reported in Chapters three and four. Chapter three describes
the base model formulated as a bi-level program. At the upper level, a retailer
(the leader) chooses fulfillment strategies to maximize profit, whereas at the lower
level the customers (the followers) pick a shopping channel to place their order for a
genetic product. Using optimality conditions we transform the bi-level program into
a single-level problem that can be solved analytically. We show that, in the absence
of a hard constraint on the size of the front-end store, the retailer would always
adjust its fulfillment strategies such that only one channel is used. This is precise
because all customers are homogeneous in the base model. The analytical results
are validated using numerical experiments. In Chapter four, customer heterogeneity
is characterized using a joint distribution of two hassle costs, each for one channel.
This extension leads to a new and (conceptually) simpler lower-level problem but a
much more complicated objective function in the resulting single-level problem. To
obtain insights we analyze a special version of the extended problem, in addition to
performing numerical experiments.

Chapter 5 sketches a work plan for Phase 3 of this research. It consists of the
following activities: (i) adding a spatial structure and analyzing traffic implications;
(ii) adding product heterogeneity and analyzing cross-channel assortment congruity;
and (iii) conducting case studies to answer the research questions.
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CHAPTER2
Literature Review

The related studies are organized into four categories, according to the perspective
from which they approach the omnichannel/e-commerce problem. Sections 2.1 and 2.2
take the perspective of the retailer and the manufacturer, respectively. In Section 2.3
we consider studies that focus on customers’ preferences, experience, and migration
across channels. Finally, Section 2.4 covers the analysis of e-commerce’s traffic impact.

2.1 Retailer perspective
With the advent of e-commerce, there was growing attention on omnichannel retail
and management strategies from the retailer’s perspective. Brynjolfsson, Hu, and
Rahman (2013) provided a comprehensively discussion on this topic. Gao and Su
(2017) built a rational expectation equilibrium (REE) model to study retailer’s stock
decision and consumer’s channel choice with and with BOPS (buy-online-pickup-in-
store). The RE model was developed by Deneckere and Peck’s (1995) model and
Dana’s (2001) model. Using the model, they found BOPS may not a suitable for
best-sellers in stores but it can help expand market coverage by mitigating stock-out
risk and improving customers’ accessibility. Built on Gao et al.’s work, Kong et al.
(2020) analyzed the pricing strategy with BOPS as one of the fulfillment channels.
The results show differentiated pricing leads to a higher profit, especially if the BOPS
channel has a low operating cost. Besides BOPS, other services designed to improve
customers’ shopping experiences are also considered in the literature. Zhang, Xu,
and He [ZXH18] considered a reserve-online-pickup-and-pay-in-store channel (ROPS,
in contrast with BOPS). ROPS may reduce return rate, help retailer expands the
market, and increases cross-selling profits. Gallino and Moreno [GM14] empirically
validated that sharing the inventory availability information can increase the number
of customers visiting the stores. Bell, Gallino, and Moreno [BGM18] demonstrated
that an online retailer can increase demand and operational efficiency by opening
offline showrooms. Hübner, Holzapfel, and Kuhn [HHK16] explored the distribution
system in omnichannel retail including the associated return processes. They suggest
developing a high-level-of-service express delivery system is the key to winning the
e-commerce battle. In sharp contrast, Jindal et al. [Jin+21] find the attributes that
customers value the most are a large assortment, competitive prices, and purchase
convenience. Their conclusion is that attempting to increase express delivery may
not be a cost-effective strategy.
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2.2 Manufacturer perspective
Since the early days of e-commerce, manufacturers have been wrestling with the
dilemma of creating their own online retail channels to compete with the existing
distribution channels. There is a large body of studies on channel conflict manage-
ment between traditional retail channels and direct online channels. Chiang, Chhajed,
and Hess [CCH03] suggested that the introduction of the direct channel may moti-
vate retailers to perform more effectively. Although direct channels may take retail-
ers’ sales away (cannibalization), this reduction is often accompanied by a wholesale
price drop. The combined effect actually benefits the retailer in equilibrium. This
conclusion was verified by Tsay and Agrawal [TA04]. The authors examine several
strategies, including adjusting wholesale pricing, incentivizing the retailer to divert
customers toward the direct channel, and conceding the demand fulfillment function
entirely to the retailer. Adding a direct channel is not necessarily detrimental to
the retailer, given the arrangement may lead to price adjustment that could benefit
both when the direct channel becomes more convenient and less costly than the tra-
ditional channel [Cat+06]. Hua, Wang, and Cheng [HWC10] and Wang, Wang, and
Wang [WWW13] considered a game between retailer and manufactures. The former
assumes the manufacturer plays the role of a Stackelberg leader in which it sets lead
time and price for the direct channel, and wholesale price for the retailer, whereas the
retailer would set the retail price. The latter regard the retailer as the Stackelberg
leader who offers a markup purchasing contract to two competitive manufacturers.
Other manufacture-retailer dual channel studies consider channel distribution strat-
egy for different products [WWW16], sustainability [WZN17], and direct channel as
a determent (e.g., to the launch of discount stores by retailers) [CPL18]. Unlike these
studies, this research attempts to build a model for an omnichannel retailer that
provides both online and offline channels, similar to real-world retail giants such as
Walmart and Amazon.

2.3 Customer perspective
Customers’ shopping preference for offline channels has been widely studied (e.g.,
[Mor79]; [Cre97]; [YDM98]). For online shopping, previous research has identified a
range of factors affecting customers’ preferences, such as prior purchase experience
[BPV03] and website environment cues [CS08]. Hausman and Siekpe [HS09] examined
the influence of website interface on consumers’ purchase preferences. Chiu, Lin, and
Tang [CLT05] studied the differences in the shopping preferences between males and
females. Ha and Janda [HJ14] discussed the influence of customized information on
online shopping preferences.

In the context of omnichannel retail, besides customers’ shopping preferences,
retailers are also interested in how customers migrate between channels. Ansari,
Mela, and Neslin [AMN08] developed an approach to model and evaluate customers’
channel migration. Neslin and Shankar [NS09] summarized the key issues in customer
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management. After analyzing customers’ responses to the channel migration strategy,
they suggested retailers should adopt a channel migration strategy that let customers
voluntarily migrate between channels or reward them to do so. Xu and Jackson [XJ19]
examined the impact of channel attributes, including transparency, uniformity, and
convenience, on customers’ channel choices. They found channel transparency and
uniformity have a positive impact on customers’ channel choices by reducing their
perceived risks.

2.4 Traffic perspective
One of the earliest studies of the impact of e-commerce on transportation systems
is conducted by Matthews, Hendrickson, and Soh (2001). They compared the cost
of online and traditional in-store distribution channels, using book sales as a case
study. In the in-store channel, a book is shipped from the publisher through various
distributors and warehouses and finally to a retail outlet. The customer purchases the
book at the retail store and brings it home. In the online channel, a book is shipped
from a publisher to a single warehouse by truck and then delivered through air freight
to a regional airport or hub, from where it is transported by a delivery truck to the
customer’s home. They found online channel costs less and has few environmental
effects when a return rate of 35% is assumed for the in-store channel. Their findings
are also confirmed by Edwards, Mckinnon, and Cullinane [EMC10]. They focused
on the last-mile leg and compare the level of carbon emissions from a conventional
non-food shopping trip with those of delivering non-food items to the home. They
found, on average, the home delivery operation is likely to generate less CO2 than
the typical shopping trip.

More recently, Shao et al. [Sha+16] built a model to explore the relationship
between e-commerce on traffic congestion. This paper indicates, to use the in-store
channel, customers impose greater pressure on the road network, while e-commerce
lessens this pressure by the scale economies in delivery (a vehicle is assumed to deliver
multiple orders), but offers a lower value (due to delayed consumption, lower level
of services, the potential for return, etc.) to consumers. Niu, Mu, and Li [NML19]
examined the impact of two O2O strategies, uniform pricing policy, and differentiated
pricing policy, on traffic congestion. They found uniform pricing reduces demand size
in the online channel (hence reducing congestion cost) but increases the total profit
when the logistic cost is low.
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CHAPTER3
A Model of

Omnichannel retail
Consider an omnichannel retailer that provides both online and in-store shopping
services in a city where it operates a distribution center (DC) and a store. The store
is located inside the city center (hence closer to customers) but has limited space
A, whereas the DC has almost unlimited space but is located outside the city. For
simplicity, we assume the retailer carries a composite product that is sold online at
a constant price of p0 per unit. The retailer may add a markup when the product is
sold in-store, thus bringing the total price to p.

In this study, we focus on the retailer’s store inventory, in-store pricing, and same-
day delivery strategies. First, the retailer needs to decide how much of the store

Figure 3.1: Omnichannel distribution
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space should be allocated to hold qs units of the products on the shelf for in-store
customers. Note that the retailer does not have to allocate all the store space to
in-store shopping. Instead, a portion of the product, denoted as qw, can be stored
in a warehouse dedicated to fulfilling online orders. Although the inventory cost is
higher in the store than in the DC, fulfilling online orders from the store may save
delivery costs. The retailer replenishes both store inventories (shelf and warehouse)
daily. Second, the retailer needs to determine its same-day delivery capacity (in the
form of vehicle-hour), denoted as t, and the premium the customers must pay for the
service (in the form of a membership fee), denoted as r. Finally, the retailer has to
determine the in-store price p.

On the demand side, we assume the number of potential customers targeted by
the retailer is a random variable d̃, with a cumulative distribution function (CDF)
F and a probability density function (PDF) f . Each customer purchases one unit of
the composite product a week. To acquire the product, they shop with a frequency
of e times per week. Unless they have the same-day delivery membership, we assume
e = 1. The customers have three shopping channels to choose from: in-store, online
with same-day delivery, and online without same-day delivery.

Assumption 1. We introduce the following assumption to further simplify the anal-
ysis.

1. A customer always chooses the shopping channel that provides the highest utility,
defined as the product’s value less the sum of the customer’s shopping cost and
price.

2. Customers are homogeneous in their valuation of the product and the channel
cost. The value of the product is v, and the hassle costs associated with an
online and in-store channel are hl and hs, respectively.

3. Only customers shopping online may return the product after the purchase. The
return probability is exogenous.

4. The premium customers pay for same-day delivery service is non-refundable.

5. Online orders can be delivered either from the warehouse or from the store
(fulfilled at the mini-warehouse). Delivering from the store is cheaper because
the store is closer to an average customer.

6. The retailer can capture all demands coming to the store or subscribe to the
delivery membership, but only a portion (denoted by an exogenous parameter γ)
of the other demands.

7. The unit cost of the product unrelated to the decisions considered herein is treated
as exogenous denoted as cp. Included in cp is the cost to acquire the product
and to move it through the supply chain to reach the city. cp covers the delivery
from the DC to either the store or a customer’s home, and thus is independent
of fulfillment channels
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3.1 Customer’s choice
We next discuss a customer’s shopping payoff in detail. Recall that the customer
can choose one option from a set of options I = {s,m, o}, where s, m and o stands
for in-store shopping, online shopping with the same-day delivery (referred to as
membership hereafter), and online shopping without the same-day delivery (referred
to as online hereafter), respectively. Let xi, i ∈ I be the proportion of the customers
who choose channel i. We use x to represent a vector of this allocation.

The utility associated with shopping online without the same-day delivery mem-
bership fee

uo = θ(v − p0) − hl. (3.1)

where hl is the hassle cost of waiting incurred due to the lack of the express delivery
service, and θ denotes the probability that a customer keeps the product after the
purchase, treated as a constant per Assumption 1.2. Users of online channel do not
pay for delivery because it is included in the price per Assumption 1.6. Since the
retailer’s decisions concerned herein have no effect on the online channel, uo is a
constant and treated as a fallback choice. Without loss of generality, we assume
uo ≥ 0, which implies even the fallback choice will yield a non-negative utility.

For shopping in-store, the customer incurs a hassle cost of hs, which depends on,
among other things, the travel cost and the effort to locate the product from the store.
Since the customer does not know how many others would choose to shop in-store,
there is a possibility that the product might end up out of stock in-store. Let ys be
the probability that the customer assigns to the event that the product is available
in the store. We assume, in the event, the customer encounters a stock-out, they will
simply forgo the purchase. Accordingly, the utility for a customer shopping in-store
is given by

us(xs) = ys(v − p) − hs. (3.2)
Note that ys depends on xsd̃, i.e., the random number of customers who actually show
up in the store, and qs, the inventory of the product. Let Ω = [D,D] be the support
of d̃. Let D denote the set of all potential customers, and consider a given customer
i ∈ D. For a demand realization d, the probability that Customer i enters the market
is given by d/D. Accordingly, the joint probability that the realized demand is d and
Customer i is among them is df(d)/D. Conditional on the presence of the customer
in the market, the probability that the realized demand happens to be d is given by
(Deneckere and Peck, 1995)

P (d̃ = d|i ∈ D) = df(d)/D∫ D

D
zf(z)/Ddz

= df(d)
E(d̃)

≡ df(d)
d̄

. (3.3)

Thus, the probability that Customer i can successfully shop in-store is given by

ys =
∫ D

D

min(xsz, qs)
xsz

zf(z)
d̄

dz =

∫ D

D
min(xsz, qs)f(z)dz

xsd̄
= E[min(xsd̃, qs)]

xsd̄
. (3.4)
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Thus, ys equals the expected in-store sales divided by the expected number of cus-
tomers choosing in-store shopping.

Proposition 1 (Utility of in-store shopping). The utility of in-store shopping us

is a monotonically decreasing function of the share of in-store shopping xs and a
monotonically increasing function of the shelf stock qs when qs ≤ Dxs.

Proof. Since us increases with ys, we only need to show ys is monotonically decreasing
with xs and increasing with qs when qs ≤ Dxs. We first rewrite ys as follows.

ys =


qs

xsd̄
qs < Dxs

1 − 1
d̄

∫ D

qs/xs
(z − qs

xs
)f(z)dz qs ∈ [Dxs, Dxs]

1 qs > Dxs

(3.5)

It is easy to see that ys is a decreasing function of xs and an increasing function of
qs when qs ≤ Dxs (i.e., the stock is lower than the minimum possible in-store flow
given by the share xs). For qs ∈ [Dxs, Dxs], applying the Leibniz rule yields

∂ys

∂qs
= 1
xsd̄

[1 − F ( qs

xs
)]; ∂ys

∂xs
= qs

x2
sd̄

[F ( qs

xs
) − 1], (3.6)

Since F (·) ≤ 1, we have ∂ys/∂qs ≥ 0 and ∂ys/∂xs ≤ 0. The proof is completed.

If the customer chooses the membership channel, they too could incur a hassle
cost hl in the event the product cannot be delivered on time. We use ym to denote
the probability that the customer assigns to the event that the product is delivered
on the same day. Accordingly, the utility associated with the membership channel is

um(xm) = θ(v − p0) − r − (1 − ym)hl = uo − r + ymhl. (3.7)

Similar to ys, the probability ym depends on the customer flow xmd̃, and the max-
imum amount of product the retailer can fulfill through the membership channel,
denoted as qw + q, where qw and q are units of products fulfilled through from ware-
house and DC, respectively. We shall discuss how q and qw are related to the same-day
delivery capacity t later. We have

ym = E(min(xmd̃, q + qw))
xmd̄

. (3.8)

Corollary 1 (Utility of online shopping with same-day delivery). The utility of online
shopping with same-day delivery um is a monotonically decreasing function of the
share of online shopping with same-day delivery xm and a monotonically increasing
function of the same-day delivery capacity qd (qd = q + qw), when qd ≤ Dxm.
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Customers always choose a channel to maximize their utility. At equilibrium, the
following conditions must be satisfied:

x∗
i > 0 → u∗

i = ū; ∀i ∈ I (3.9)
u∗

i ≤ ū,∀i ∈ I, (3.10)

where ∑
i∈I

x∗
i = 1;x∗

i ≥ 0, (3.11)

and ū is the maximum utility any customer could achieve. In words, nobody could
improve their own utility by unilaterally switching to a different channel at the equi-
librium.

Figure 3.2 illustrates the equilibrium solution for given retailer decisions. The blue,
red, and green curves represent the utility of channel s, m, and o, respectively. Of the
three channels, the utility of s and m decreases with xi whereas that of o is depicted as
a horizontal line. For simplicity we shall assume
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Figure 3.2: Illustration of the equilibrium solution.

customers tend to pre-
fer s or m to o if
the number of users of
channel s and m is suf-
ficiently small. This is
consistent with the des-
ignation of the online
channel as the fallback
option in our model.
Under this assumption,
there are three possi-
ble equilibria. The
first is achieved when
the red and blue curves
do not intersect within
the feasible range, e.g.,

um(1) > us(0). (or us(1) > um(0) In this case, everyone chooses the membership
channel (Type I). The system arrives at the second equilibrium if the intersection
between the red and blue curves lies above the green line, in which case only o is not
used (Type II). The third case emerges when the intersection of the two curves rises
above the line. They would not intersect, however, because the equilibrium utility
will be kept at uo and all three channels will be used (Type III).

3.2 Retailer’s optimization problem
The retailer’s goal is to maximize the expected profit by choosing the five design
parameters, qs (in-store shelf inventory), qw (in-store warehouse inventory), t (same-
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day delivery capacity), p (in-store price), and r (same-day delivery membership fee)
while anticipating the customers’ channel choice. To model the same-day delivery
operation, let τ and τw be the vehicle time needed to deliver one unit of product
from the DC and from the warehouse, respectively, and assume τw < τ . Recalling q
is defined as the number of products delivered from the DC by channel m, we have

t = qτ + qwτw. (3.12)

Hereafter, we replace t with q as the decision variable that determines delivery capac-
ity and represent {qs, qw, q} with a vector variable q. Both τ and τw may depend on
e, the shopping frequency of the same-day delivery membership holders. Recall that
we assume all customers purchase one unit of the product a week. Thus, the shop-
ping frequency does not affect how much they buy, but merely how many trips the
retailer must make to deliver them. The delivery cost, however, does not necessarily
double when the shopping frequency doubles, because delivering the same amount of
product in two separate trips means each time only half the cargo space is needed.
The current model, however, is not amenable to specifying the actual relationship
between τ/τw and e. We shall address this issue later using a model with spatial
heterogeneity.

We are now ready to formulate the retailer’s decision problem as a mathematical
program with equilibrium constraints (MPEC).

max g(q, p, r,x) = (p− cp)E(min(xsd̃, qs)) + αE(xsd̃) − (csqs + cwqw)
+ (E(xmd̃) + γE(xod̃)) (θ(p0 − cp) − cr(1 − θ))
+ rE(xmd̃) − cd(τwqw + τq) (3.13a)

subject to:
awqw + asqs ≤ A; (3.13b)

q ≥ 0,p ≥ 0, r ≥ 0 (3.13c)
xi(ui − ū) = 0,∀i ∈ I;ui ≤ ū,∀i ∈ I; (3.13d)∑

i∈I
xi = 1;x ≥ 0. (3.13e)

In the objective function (3.13a), the first and second terms are the expected revenue
from in-store sales and cross-sales, respectively. The cross-sale revenue is proportional
to the expected number of in-store shoppers. The third term is the total in-store
inventory cost, in which cs and cw are the unit inventory costs in-store and warehouse
respectively. Note that the inventory cost at DC is normalized to zero. The fourth
term is the revenue from online sales less the extra cost associated with the return.
Here, γ ∈ [0, 1] represents the share of online shoppers who end up shopping with the
retailer. In other words, (1−γ)E(xod̃) represents the loss of customers to competitors.
Finally, the fourth and fifth terms are the revenue generated from the sale of same-day
delivery memberships and the delivery cost, respectively.
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Constraint (3.13b) dictates that the amount of products placed in the store is
restricted by the size of the store A, where aw and as are the areas occupied per unit
product in the warehouse and on the shelf, respectively. Constraints (3.13d) - (3.13e)
rewrite the equilibrium conditions as a set of complementary conditions.

Assumption 2. To simplify the analysis, we further assume

1. The unit inventory cost is proportional to the area occupied by the product, i.e.,

cs

cw
= as

aw
. (3.14)

2. Storing the product in and delivering it from the warehouse is cheaper than
delivering it from DC, i.e.,

0 < cw + cdτw < cdτ → µ0 ≡ cdτ

cw + cdτw
> 1;µ1 ≡ cd(τ − τw)

cw
> 1. (3.15)

Proposition 2 (Equilibrium corresponding to profit-maximization). To maximize
the expected profit, the retailer’s decision will always push the customers to settle at
a Type III equilibrium, i.e., um(x∗

m) = us(x∗
s) = uo and x∗

m + x∗
s + x∗

o = 1.

Proof. Since there are only three possible equilibria under the assumption, we only
need to show the retailer’s profit is not maximized under either Type I or Type II
equilibrium. Without loss of generality, suppose um(0) ≥ us(0) ≥ uo ≥ 0. For Type
I equilibrium, we have um(1) > us(0) > uo. Note that

um(1) = θ(v − p0) − r − (1 − ym(1))hl.

Clearly, the retailer can increase its profit by charging a higher membership fee r
until um(1) = us(0), a Type II equilibrium. We next show Type II equilibrium
cannot secure profit maximization either. At such an equilibrium, we have

um(x∗
m) = us(x∗

s) > uo, x
∗
m + x∗

s = 1,

and

us(x∗
s) = ys(x∗

s)(v − p) − hs, um(x∗
m) = θ(v − p0) − r − (1 − ym(x∗

m))hl.

Note that ym and ys are affected neither by in-store shopping price p nor by the
membership fee r. Thus, the retailer can simultaneously raise both p and r (hence
lowering us and um) while leaving the system at Type II equilibrium. It is easy to
see the incentive to continue this price hike would only disappear when the system
arrives at a Type III equilibrium, i.e., us = um = uo. This completes the proof.
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Since um = uo at a profit-maximization equilibrium, the membership fee at equi-
librium is

r = ymhl. (3.16)

Similarly, setting us = uo yields

p = v − hs − hl + θ(v − p0)
ys

(3.17)

The numerator of the second term above, hs − hl + θ(v − p0) may be viewed as
the expected customer gain from the in-store channel (note that it equals ys(v − p)).
Hereafter we replace this term with the symbol ρ for simplicity and note that ρ ≥
hs if in-store shopping is a viable channel (cf. Eq. (3.2)). We shall also replace
θ(p0 − cp) − cr(1 − θ) in the fourth term of (3.13a) with ψ. Namely,

ρ ≡ hs − hl + θ(v − p0);ψ ≡ θ(p0 − cp) − cr(1 − θ). (3.18)

Note that ψ can be interpreted as the gross profit of selling one unit of product
through an online channel.

3.3 Solution analysis
We proceed to analyze the solution to the retailer’s optimization problem. Let us
introduce x′ = [xm, xs] and recognizing xo = 1 − xm − xs enables us to eliminate the
flow conservation condition (3.13e). Invoking Eqs. (3.4), (3.8), (3.16) and (3.17), we
rewrite Problem (3.13) as

max g(q,x′) =(v − cp)ysxsd̄+ (α− ρ)xsd̄− (csqs + cwqw) + (xm + γ(1 − xm − xs))ψd̄
+ hlymxmd̄− cd(qwτw + qτ) (3.19a)

subject to:
awqw + asqs ≤ A; (3.19b)
q ≥ 0; x′ ≥ 0 (3.19c)

To solve the above problem, we first fix x′, and write the Lagrangian of (3.19) as

L(q|x′) = (v − cp)ysxsd̄+ (α− ρ)xsd̄− (csqs + cwqw) + (xm + γ(1 − xm − xs))ψd̄
+ hlymxmd̄− cd(qwτw + qτ) − ϕ1(asqs + awqw −A) + ϕ2qs + ϕ3qw + ϕ4q,

(3.20)

where ϕj ≥ 0, j = 1...4 are Lagrangian multipliers corresponding to the respective
constraints.
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3.3.1 Unlimited store space
We first consider the case when the store area A is so large that all demand can be
fulfilled through the in-store channel. Since in this case Constraint (3.19b) is always
inactive, the first-order conditions lead to

∂L
∂qs

= (v − cp)
(

1 − F

(
qs

xs

))
− cs + ϕ2 = 0; (3.21a)

∂L
∂qw

= −cw − cdτw + hl

(
1 − F

(
q + qw

xm

))
+ ϕ3 = 0; (3.21b)

∂L
∂q

= −cdτ + hl

(
1 − F

(
q + qw

xm

))
+ ϕ4 = 0 (3.21c)

Per Assumption 2.2, we can show ϕ4 > ϕ3 ≥ 0. Thus, q = 0. That is, if the retailer
has access to an unlimited store area, it makes no sense to fulfill the membership
channel from DC. If qw or qs is also zero, the problem is reduced to a trivial one,
since only one channel (store or membership) will be used. We thus focus on the case
where qw > 0 and qs > 0. This leads to the following solution

q∗
s

xs
= F−1 (1 − η) ; q∗

w

xm
= F−1 (1 − σ) ; (3.22)

η ≡ cs

v − cp
; σ ≡ cdτw + cw

hl
. (3.23)

Given any x′, Condition (3.22) suggests both q∗
s/xs and (q∗

w)/xm must be a constant
in order to maximize the profit. Thus, it dictates the retailer’s best response to a given
user choice pattern, provided the distributional information about the demand (i.e.,
F (·)) is known. Since y∗

s and y∗
m are functions of q∗

s/xs and (q∗
w)/xm respectively (cf.

Eq. (3.5)), they are determined accordingly. Let us introduce β∗
s ≡ q∗

s/xs and β∗
m ≡

(q∗
w)/xm, and interpret β∗

s (β∗
m) as the total number of customers needed to exhaust

the shelf (same-day delivery) capacity, corresponding to the choice probability xs

(xm). Eq.((3.22)) suggests β∗
m only depends on the ratio between the unit storage and

delivery cost from WH (cdτw+cw) and the extra waiting cost hl. The smaller the ratio,
the greater the optimal capacity for the membership channel. When cdτw + cw > hl

(i.e., σ > 1), the membership channel should be abandoned because it is too expensive
to operate relative to the value it creates. Similarly, β∗

s is determined by the ratio
between cs (in-store inventory cost) and v − cp (the profit potential). If η > 1 (i.e.,
the shelf inventory cost is higher than the gross profit potential), the in-store channel
will not be used. The larger the inventory cost relative to the profit potential, the
less attractive the store channel. If the total cost exceeds the profit potential, then
the store channel should not be used at all.

Thus, for the given x′, the retailer’s decisions are summarized as

qs = β∗
sxs, qw = β∗

mxm, q
∗ = 0, r∗ = y∗

mhl, p
∗ = v − ρ/y∗

s . (3.24)



20 3 A Model of Omnichannel retail

Thus, the optimal membership premium r∗ and in-store price p∗ are independent of
customer choice in this case. Also, since y∗

i (i = m, s) increases with β∗
i per Eq. (3.5),

so are r and p. q∗
i , on the other hand, is proportional to xi. Replacing q in Eq. (3.19a)

with q∗
s = β∗

sxs, q
∗
m = β∗

mxm, q
∗ = 0, we arrive at

max g(x′) =(v − cp)y∗
sxsd̄+ (α− ρ)xsd̄− (csβ

∗
sxs + cwβ

∗
mxm) + (xm + γ(1 − xm − xs))ψd̄

+ hly
∗
mxmd̄− cdτwβ

∗
mxm (3.25)

subject to:
xm + xs ≤1;xm ≥ 0, xs ≥ 0. (3.26)

The objective function is linear in both xs and xm, and its derivatives with respect
to them are

∂g

∂xs
=(v − cp)d̄y∗

s + (α− ρ)d̄− csβ
∗
s − γd̄ψ; (3.27a)

∂g

∂xm
=(1 − γ)d̄ψ + hld̄y

∗
m − (cdτw + cw)β∗

m. (3.27b)

Furthermore, the difference between the two is

∆ = ∂g

∂xs
− ∂g

∂xm
=

[
d̄((v − cp)y∗

s + α) − (d̄ρ+ csβ
∗
s )

]
−

[
d̄(ψ + r∗) − σhlβ

∗
m

]
.

(3.28)
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Figure 3.3: Optimal channel distribution
with unlimited store space.

Here in the first and second brackets are
the marginal net profits of in-store and
membership channels, respectively. In
each bracket, the first term represents
the marginal gain, and the second the
marginal cost. For the in-store chan-
nel, for example, the gain is the sum
of cross-sale (d̄α) and the gross profit
(d̄(v − cp)y∗

s ), whereas the cost comes
from inventory (csβ

∗
s ) and the price pres-

sure due to the competition from the on-
line channel (d̄ρ).

To summarize, the optimal channel
choice must be all or nothing with unlim-
ited store area, depending on the sign of
∆ in Eq. (3.28). If ∆ > 0, everyone will

be directed to the in-store channel; otherwise, the membership channel dominates;
see Figure 3.3 for an illustration. When ∆ = 0, the channel choice becomes arbitrary.



3.3 Solution analysis 21

3.3.2 Limited store space
If the demand is large enough to exhaust the store area, the resource constraint
(3.19b) will always be activated, because the store is a preferred location for fulfilling
both the in-store and the membership channel (Assumption 2.2). Ignoring the trivial
case where q = 0, we have ϕ1 > 0, ϕ2 = ϕ3 = ϕ4 = 0 in Eq. (3.20). Applying the
first-order conditions then leads to the following results:

ϕ1 = cd(τ − τw) − cw

aw
> 0; q

∗
s

xs
= F−1(1 − µ1η); q∗

w = A− asq
∗
s

aw
; q

∗
w + q∗

xm
= F−1(1 − µ0σ);

(3.29)

where η and σ are defined in Eq. (3.23) and µ0 and µ1 are defined in Eq. (3.15). Simi-
larly, the retailer’s optimal response is to maintain β∗

s = q∗
s/xs and β∗

m = (q∗
w+q∗)/xm

at a constant level. The only difference is that the activated resource constraint moves
the position of β∗

s and β∗
m away from the upper bound of the demand distribution

(note that both µ1 and µ0 are larger than 1 per definition).
We then rewrite the decision variables for the given x′ as

qs = β∗
sxs; qw = A− asβ

∗
sxs

aw
; q = β∗

mxm − qw; r∗ = y∗
mhl; p∗ = v − ρ/y∗

s , (3.30)

and transform Problem (3.19) into the following:

g(x′) =(v − cp)y∗
sxsd̄+ (α− ρ)xsd̄−

(
csβ

∗
sxs + cw

A− asβ
∗
sxs

aw

)
+ ((1 − γ)xm + γ − γxs)d̄ψ

+ hly
∗
mxmd̄− cd

(
(τw − τ)A− asβ

∗
sxs

aw
+ τβ∗

mxm

)
.

(3.31)
Again, this is a linear function of xs and xm, with the marginal profit for each being
specified as

∂g

∂xs
=(v − cp)d̄y∗

s + (α− ρ)d̄− csβ
∗
s + cwasβ

∗
s

aw
− γd̄ψ − cdasβ

∗
s (τ − τw)
aw

=(v − cp)d̄y∗
s + (α− ρ)d̄− γd̄ψ − µ1csβ

∗
s ; (3.32a)

∂g

∂xm
=(1 − γ)d̄ψ + hld̄y

∗
m − cdτβ

∗
m. (3.32b)

The difference between the two marginal profits reads

∆ = ∂g

∂xs
− ∂g

∂xm
=

[
d̄((v − cp)y∗

s + α) − (d̄ρ+ µ1csβ
∗
s )

]
−

[
d̄(ψ + r∗) − µ0σhlβ

∗
m

]
.

(3.33)

Comparing it to Eq. (3.28), we can see the two expressions are nearly identical except
both cost items in Eq. (3.28) (csβ

∗
s and σhlβ

∗
m) are scaled by a constant larger than

1, which is related to the relative advantage of fulfilling membership orders from WH
(see Eq. 3.15).



22 3 A Model of Omnichannel retail

10

=
s
∗
< 1

∗

Objective function 

when <

Objective function 

when >

Objective function 

when =

Feasible region

∗

Figure 3.4: Optimal channel dis-
tribution with limited store space.

If ∆ < 0, the retailer prefers to direct a
greater share of customers to the membership
channel, because it has a larger marginal profit.
Since there is no hard constraint on the capacity
of that channel, the optimal solution is obtained
when everyone uses it, i.e., x∗

m = 1, x∗
o = x∗

s = 0
(the top left corner of the feasible region in Figure
3.4).

The calculus is different when ∆ > 0. In this
case, the retailer prefers the in-store channel, but
xs could reach such a level that it alone consumes
the entire store space. This happens when xs =
A/(asβ

∗
s ). Beyond this point (i.e, on the right

side of the vertical black dashed line in Figure
3.4), the retailer still has the incentive to direct

more customers to the store channel as long as ∂g/∂xs > ∂g/∂xm. However, as
more and more customers visit the store with a fixed shelf capacity, the best response
strategy that holds β∗

s (hence y∗
s ) as a constant can no longer be kept. Instead, we

replace β∗
sxs in (3.31) with a constant qs = A/as, and recognize ys as a function of

xs. This leads to a new objective function

g(x′) =(v − cp)ysxsd̄+ (α− ρ)xsd̄− cs
A

as
+ ((1 − γ)xm + γ − γxs)d̄ψ

+ hly
∗
mxmd̄− cdτβ

∗
mxm

(3.34)

This would alter the marginal profit of xs to

∂g

∂xs
=(v − cp)

(
d̄ys + A

asxs
(F ( A

asxs
) − 1)

)
+ (α− ρ)d̄− γd̄ψ. (3.35)

In addition, we have

∂2g

∂x2
s

= −A2(v − cp)
a2

sx
3
s

f( A

asxs
) < 0. (3.36)

The marginal profit of xm remains the same because the best response concerning the
membership channel is not limited by the store space (hence β∗

m is still a constant).
Since ∂2g/∂x2

s < 0, any additional increase in xs beyond A/(asβ
∗
s ) is bound to

reduce the marginal profit, as well as lower ys. As one consequence, the retailer
must lower the in-store price p as compensation, as shown in Eq. (3.17). There
are two possible outcomes. The first occurs when ∂g/∂xs is reduced to the level
of ∂g/∂xm before xs reaches 1. In this case, both channels will be used at the
optimum (illustrated by the red circle x∗

s in Figure 3.4). The other outcome emerges
if ∂g/∂xs > ∂g/∂xm even when xs = 1, i.e., everyone will be directed to the in-store
channel (even if the capacity is insufficient).
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3.4 Special case: uniform demand distribution
In this section, we consider a special case where the demand follows a uniform distri-
bution between D and D with a CDF F (d) and a PDF f(d) as follows:

F (d) =


0 d < D

d−D

D−D
; D ≤ d ≤ D

1 d > D

; f(d) =

{
1

D−D
; D ≤ d ≤ D

0 else
(3.37)

Accordingly, the successful shopping probabilities for in-store and membership chan-
nels, yi, i = s,m, becomes

yi =


qi

xid̄
qi < Dxi;

1 − (D−qi/xi)2

D
2−D2 qi ∈ [Dxi, Dxi];

1 qi > Dxi,

,∀i ∈ [m, s] (3.38)

3.4.1 Unlimited store space
When D and D are sufficiently small relative to A, the store space can be viewed as
unlimited. From Eqs. (3.22), and (3.37), we have

β∗
s = (1 − η)D + ηD; β∗

m = (1 − σ)D + σD. (3.39)

Clearly, the smaller η or σ, the more profitable and attractive their respective channel.
The validity of the formula requires both η and σ are less than 1, for otherwise, their
respective channel becomes nonprofitable. The marginal profits of the two channels
(Eq. (3.27)) become

∂g

∂xs
=(v − cp)Q(η) + (α− ρ)d̄− γd̄ψ; (3.40a)

∂g

∂xm
=hlQ(σ) + (1 − γ)d̄ψ, (3.40b)

where Q(·) is a quadratic function taking the following form

Q(w) = (D −D)
2

w2 − wD + d̄. (3.41)

It is easy to verify that Q(w) is a decreasing function of w when w ∈ [0, 1]. More
specifically, when w = 1 (the direct cost of operating a channel equals the profit
potential), Q(·) = 0; and when w = 0 (the direct cost of operating a channel is zero),
Q(·) = d̄. Assume the most favorable conditions for both channels (i.e., σ = η = 0)
and replace ψ and ρ with their respective definitions, we have

∆ = ∂g

∂xs
− ∂g

∂xm
= d̄((1 − θ)(v − cp + cr) + α− hs), (3.42)



24 3 A Model of Omnichannel retail

where 1 − θ is the return rate of shopping online and cr is the unit return cost. As ex-
pected, excluding the considerations for costs (inventory and delivery), the advantage
of the store channel derives primarily from cross-sale and lower return rates.

3.4.2 Limited store area
When D and D are large enough to exhaust all store space, the assumption of uniform
distribution leads to

β∗
s = (1 − µ1η)D + µ1ηD; β∗

m = (1 − µ0σ)D + µ0σD. (3.43)

Accordingly, Eq. (3.32) becomes

∂g

∂xs
=(v − cp)Q(µ1η) + (α− ρ)d̄− γd̄ψ; (3.44a)

∂g

∂xm
=hlQ(µ0σ) + (1 − γ)d̄ψ. (3.44b)

Note that

µ1 − µ0 = cdτw

cw

(
cdτ

cdτw + cw
− 1

)
> 0. (3.45)

Suppose the retailer can reduce the delivery time τ from DC while keeping everything
else equal. This will reduce both µ0 and µ1, hence benefit both channels. This result
is a bit counter-intuitive since one is inclined to think reducing the DC delivery time
should impact the store channel negatively. However, µ1 decreases more since µ1 −µ0
decreases with τ according to Eq. (3.45). Thus, paradoxically, improving the delivery
time from DC would help the in-store channel, not the membership channel.

If ∆ < 0, the retailer will abandon the store channel completely, and use the entire
store space as WH to fulfill online orders. Otherwise, substituting ys in Eq. (3.35)
with Eq. (3.38) leads to

∂g

∂xs
=


(α− ρ)d̄− γd̄ψ, βs < D;
(v − cp) β2

s −D2

2(D−D)
+ (α− ρ)d̄− γd̄ψ, βs ∈ [D,D]

(v − cp)d̄+ (α− ρ)d̄− γd̄ψ, βs > D

(3.46)

where βs = qs/xs = A/(asxs). Obviously, ∂g/∂xs is a continuous monotonically
increasing function of βs when βs ∈ [Dxs, Dxs], and a constant when βs < D and
βs > D.

Note that βs > D cannot be optimal because reserving a capacity that exceeds
the absolute upper bound of the demand will produce redundancy. The retailer can
always bring its inventory down from that level without losing any revenue. Suppose
instead βs < D at the optimum. In this case, the value of xs has reached the
maximum (i.e., 1, or everyone is directed to the in-store channel) and ∂g/∂xs has
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reached the lower bound but is still no less than ∂g/∂xm (in-store channel is still
more attractive than other channels). It follows that (α − ρ)d̄ − γd̄ψ ≥ ∂g/∂xm →
αd̄ ≥ ∂g/∂xm + γd̄ψ + ρd̄ → α ≥ ψ + ρ. Thus, for this corner case to materialize,
in-store cross-sale profit (α) must be so large that it exceeds the sum of the gross
profit of the online channel (ψ), and the customer gain of the in-store channel (ρ).
This condition is unlikely to hold in practice.

We finally consider the case where βs lies in [D,D], i.e., the share of the in-store
channel will reach a demarcation point such that ∂g/∂xs = ∂g/∂xm. This condition
leads to

β̂s =

√
2(D −D)
v − cp

(
(ρ− α+ ψ)d̄+ hlQ(µ0σ)

)
+D2. (3.47)

The interior solution can be summarized as

xo = 0, xs = A

asβ̂s

, xm = 1 − A

asβ̂s

; (3.48a)

qs = A

as
, qw = 0, q =

(
1 − A

asβ̂s

) (
(1 − µ0σ)D + µ0σD

)
. (3.48b)

3.5 Access to store inventory information
Many retailers have begun to offer various Buy-Online and Pickup-in-Store (BOPS)
options in recent years. Such an option gives the customer access to in-store in-
ventory information, which can in theory reduce the probability of encountering an
unexpected stock-out event to zero. Thus, the information can make the in-store
channel more attractive to customers. To the retailer, however, it is a mixed blessing.
On the one hand, a better shopping experience in the store can boost sales there. On
the other hand, as customers will shy away from the store once the stock-out occurs,
the benefits from cross-sales are bound to drop (even if the retailer can sell more of
the product through the store channel).

In this section, we assume the retailer makes the inventory information freely
available to all customers through its e-commerce platform. This assumption changes
the utility of the in-store channel to the following

us = (v − p) − hs. (3.49)

Since the customer only visits the store if they find the product is available, the
probability of shopping success ys is always 1. Although we do not analyze it here,
we note the utility of a BOPS option would take a similar form but impose a different
(potentially smaller as the search cost is avoided) hassle cost. By setting us = uo, we
find the in-store price now reads

p = v − ρ, (3.50)
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where ρ is defined in Eq.(3.18). The objective of the retailer’s design problem becomes

max g(q,x) = (v − ρ+ α− cp)ysxsd̄− (csqs + cwqw) + (xm + γ(1 − xm − xs))ψd̄
+ hlymxmd̄− cd(τwqw + τq) (3.51)

Compared to the objective of the original Problem (3.19), the main difference concerns
the effect of cross-sale: it is limited by the in-store stock volume (ysxsd̄) rather than
the in-store customer volume (xsd̄). Put in another way, these two quantities are
identical, now the access to information is provided ( ys = 1).

3.5.1 Unlimited store area
When A is sufficiently large, the first-order conditions of the retailer’s design problem
with the objective Eq.3.51 lead to

β∗
s = q∗

s

xs
= F−1 (1 − η̄) ; β∗

m = q∗
w

xm
= F−1 (1 − σ) ; (3.52)

η̄ ≡ cs

v − ρ+ α− cp
; σ ≡ cdτw + cw

hl
. (3.53)

Similarly, the result suggests the retailer’s best response is to maintain constant β∗
s

and β∗
m. While information availability does not change the form of β∗

m, it does change
that of β∗

s . To highlight this difference, we use η̄ to denote the constant defining β∗
s .

Comparing η̄ and η, we can see that, if the cross-sale effect is sufficiently strong (i.e.,
α > ρ), η̄ < η. This means, everything else equal, β∗

s would increase (or the in-store
channel becomes more attractive) after the inventory information is provided.

Replacing q in Eq. (3.51) with q∗
s = β∗

sxs, q
∗
m = β∗

mxm, q
∗ = 0 yields

max g(x′) =(v − cp + α− ρ)y∗
sxsd̄− (csβ

∗
sxs + cwβ

∗
mxm) + (xm + γ(1 − xm − xs))ψd̄

+ hly
∗
mxmd̄− cdτwβ

∗
mxm (3.54a)

subject to:
xm + xs ≤1;xm ≥ 0, xs ≥ 0. (3.54b)

The objective is a linear function with respect to x′, and assuming the demand is
uniformly distributed within [D,D], the marginal profits are:

∂g

∂xs
=(v − cp + α− ρ)Q(η̄) − γd̄ψ; (3.55a)

∂g

∂xm
=hlQ(σ) + (1 − γ)d̄ψ, (3.55b)

Compared to Eq. (3.40a), the marginal profit given by Eq. (3.55a) is augmented by
(α − ρ)(Q(η̄) − d̄). Recall Q(η̄) ≤ d̄, the effect of this change on the profitability of
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the store channel depends on the sign of α − ρ. If α − ρ > 0, the effect is negative;
otherwise, it is positive. Thus, the provision of inventory information hurts the in-
store channel if and only if the retailer makes more money from cross-sale α than
direct sale (ρ = v− p). Such a retailer will also react to this reduction in profitability
by attempting to direct more customers to the in-store channel (since β∗

s increases
after the information become available, as indicated in Eq. (3.52)).

3.5.2 Limited store area
When the store area A is not sufficiently large, the sub-game equilibrium solution
given a certain x becomes

β∗
s = (1 − µ1η̄)D + µ1η̄D; β∗

m = (1 − µ0σ)D + µ0σD. (3.56)

Accordingly, Eq. (3.55) becomes

∂g

∂xs
=(v − cp + α− ρ)Q(µ1η̄) − γd̄ψ; (3.57a)

∂g

∂xm
=hlQ(µ0σ) + (1 − γ)d̄ψ. (3.57b)

If ∆ = ∂g

∂xs
− ∂g

∂xm
< 0, the retailer will use the entire store space as WH to fulfill

online orders. Otherwise, the marginal profit with respect to xs becomes

∂g

∂xs
=(v − cp + α− ρ)

(
d̄ys + A

asxs
(F ( A

asxs
) − 1)

)
− γd̄ψ, (3.58)

and substituting ys with Eq.(3.38) yields

∂g

∂xs
=


−γd̄ψ, βs < D;
(v − cp + α− ρ) β2

s −D2

2(D−D)
− γd̄ψ, βs ∈ [D,D]

(v − cp + α− ρ)d̄− γd̄ψ, βs > D

(3.59)

In this case, neither βs > D nor βs < D can be optimal. That βs > D cannot be
optimal is, again, because reserving a capacity over the absolute upper bound of the
demand does not make sense. If βs < D, the marginal profit turns negative (−γ), and
thus cannot be optimal either. This is precisely because the retailer lost the profits
generated from cross-selling to customers who would have come to the store even
when the product is out of stock, had the inventory information not been available.

The solution corresponding to the case when βs lies in [D,D] is as follows:

β̂s =

√
2(D −D)

v − cp + α− ρ

(
ψd̄+ hlQ(µ0σ)

)
+D2; (3.60a)
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xo = 0, xs = A

asβ̂s

, xm = 1 − A

asβ̂s

; (3.60b)

qs = A

as
, qw = 0, q =

(
1 − A

asβ̂s

) (
(1 − µ0σ)D + µ0σD

)
. (3.60c)



CHAPTER4
Heterogeneous

Customers
For simplicity the base model presented in Chapter 3 assumes all customers be iden-
tical in their valuation of the product (v) and the hassle costs of different channels
(hs and hl). It turns out, with homogeneous customers, the profit-maximizing re-
tailer always prefers one channel to others, and in absence of hard constraints (e.g.,
store space), all customers will be guided to that channel. In reality, customers are
anything but homogeneous. They may reside in different parts of the city, which
means the time required (hence the hassle cost incurred) to travel to the store varies
from one customer to another. Another source of heterogeneity is customer pref-
erences, such as the value attached to the time spent on travel, waiting for online
orders, and searching the product in the store. Allowing heterogeneous customers in
the model means different channels may appeal to different demand segments. Thus,
the retailer’s decisions are not designed to maximize the output of one channel, but
rather to achieve an optimal channel portfolio that takes advantage of customers’
heterogeneous preferences.

In this chapter, we set out to add customer heterogeneity into the omnichannel
retail model. To maintain tractability, we focus on the two hassle costs, hs and
hl, allowing them to vary continuously across the population. Thus, the relative
magnitude of the two costs determines the channel preference of a customer under a
given omnichannel design. Throughout this chapter, we will also assume customers
have access to the inventory information in the store and thus would only choose the
in-store channel if the product is available.

Assumption 3. To characterize customers’ heterogeneous preferences, we assume

1. customers are distributed within a rectangle defined by the lower and upper
bounds of the two hassle costs, i.e., {(hl, hs)|hs ∈ [0,Hs], hl ∈ [0,Hl]} with a
joint probability density function fh(l, s).

2. shopping with the online channel is always a viable option for any customer
living in the city, i.e., uo ≥ 0, which dictates Hl ≤ θ(v − p0).
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4.1 Determination of market share
In the base model, the market share is determined according to a Nash equilibrium,
at which identical customers will face the same utility regardless of which channel
they choose. Thus, the focus there was to find a customer flow pattern that balances
“congestible” channel resources to reach equilibrium. With heterogeneity, the mech-
anism is quite different: each user’s own unique channel preference will determine,
collectively, the market share of different channels.

We write the utilities of the three channels in the following and note that the
in-store channel has no out-of-stock risk ys thanks to the availability of information.

us = (v − p) − hs; (4.1a)
uo = θ(v − p0) − hl; (4.1b)
um = θ(v − p0) − r − (1 − ym)hl. (4.1c)

Under the assumption that a customer always selects the channel with the max-
imum utility for their own unique (hs, hl), the market share of the three channels
can be determined using a 2-D diagram shown in Figure 4.1-a. In the diagram, the
dashed red line marks the demarcation between the in-store channel and online chan-
nel: anyone whose (hs, hl) falls above (below) that line prefers the in-store (online)
channel. In a similar vein, the dashed green line marks the demarcation between in-
store and membership channels, and the dashed blue line between membership and
online channels.

Since the three demarcation lines must intersect at the same point per definition,
they divide the population into three segments, each for one channel, as highlighted by
the color-shaded areas in Figure 4.1-a. That intersection corresponds to the customer
indifferent to all three channels, whose hassle costs are

hl(I) = r

ym
;hs(I) = r

ym
+ (v − p) − θ(v − p0). (4.2)

For simplicity, this point will be referred to as the indifferent point, marked as I in
Figure 4.1-a. The coordinates of the other points highlighted in the plot are

hl(A) = 0; hs(A) = (v − p) − θ(v − p0); (4.3a)
hl(B) = 0; hs(B) = (v − p) − θ(v − p0) + r; (4.3b)
hl(C) = Hl; hs(C) = (v − p) − θ(v − p0) + r + (1 − ym)Hl;

(4.3c)
hl(D) = Hl; hs(D) = (v − p) − θ(v − p0) +Hl; (4.3d)
hl(E) = θ(v − p0) − (v − p); hs(E) = 0; (4.3e)

hl(F ) = θ(v − p0) − (v − p) − r

1 − ym
; hs(F ) = 0. (4.3f)

A few remarks about the diagram are in order here. First, not everyone who prefers
the store channel can shop in the store. Instead, the actual flow of in-store channel
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Figure 4.1: Illustration of channel choice with heterogeneous customers.

customers is capped by the store space. When it reaches the capacity, the retailer
will lose those who prefer to shop in store but cannot find the product there. On the
other hand, the customers who prefer the membership channel will always be served,
even though not everyone will get the product delivered on time as promised (i.e.,
ym < 1). Second, Eq. (4.2) can be used to tell how the coordinates of the indifferent
point moves with the retailer’s decisions. Specifically,

• A higher membership premium r will move point-I to the northeast corner along
the dashed red line, leading to a smaller share for the membership channel and
a larger share for both in-store and online channels, see Figure 4.1-b. When
r = ymθ(v − p0) (i.e., when point-I, point-C, and point-D merge together),
the membership share is reduced to zero. On the other hand, a lower r shifts
point-I toward the southwest direction, benefiting the membership channel at
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the expense of the other two. When point-I, point-A, and point-B overlap, no
one will use the online channel.

• A higher (lower) store price p moves the indifferent point horizontally to the left
(right), see Figure 4.1-c for an illustration. When the indifferent point moves to
the left, the market share of the in-store channel shrinks, and those of the other
two channels grow. Clearly, when the green line crosses the northwest corner of
the feasible region, the in-store channel will be abandoned by all customers.

• The on-time delivery probability ym for the membership channel is related to
the delivery capacity t, which is related to the sum of qw and q. A higher delivery
capacity will push ym toward 1. This will have two consequences. First, it will
lower the dashed blue line. Second, it will force the dashed green line to turn
counterclockwise. Together, the change will shift the indifferent point along the
red line to the southwest direction.

Let Ss, Sm, and So be, respectively, the area corresponding to the in-store, mem-
bership and online segments highlighted in Figure 4.1-a, and S =

∑
i Si = HlHs.

Then, the market share of channel i ∈ {s,m, o} can be expressed as

xi =
∫∫

Si
fhdSi∫∫

S
fhdS

. (4.4)

Note that Si can be written as a function of the retailer’s decision variables (r, p, q, qw, qs).
Thus, for a given vector of decisions, the market share x is uniquely determined.

4.2 Formulation of the general model
We are now ready to formulate the retailer’s optimization problem as follows:

max g(q, p, r) = (p+ α− cp)E(min(xsd̃, qs)) − (csqs + cwqw)
+ (xm + γxo)d̄ψ + rxmd̄− cd(τwqw + τq) (4.5a)

subject to:
awqw + asqs ≤ A; (4.5b)
r ≤ ymθ(v − p0); (4.5c)
q ≥ 0, r ≥ 0. (4.5d)

Constraint (4.5c) imposes a natural bound on the membership premium r (no cus-
tomer would use the membership channel when the upper bound is hit per the as-
sumptions). The channel market share xi in Eq. (4.5a) is given by Eq. (4.4). Noting
ym is an intermediate variable that has complex interactions with many other vari-
ables through Eq.(4.4), we propose to simplify the above optimization problem by
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replacing q by ym. This is achieved by invoking q + qw = βmxm, and noting βm is a
function of ym as per Eq.(3.8). It yields the following problem:

max g(qs, qw, ym, p, r) = (p+ α− cp)ysxsd̄− (csqs + cwqw)
+ (xm + γxo)d̄ψ + rxmd̄− cd(τβmxm − (τ − τw)qw) (4.6a)

subject to:
awqw + asqs ≤ A; (4.6b)
r ≤ ymθ(v − p0); (4.6c)
qs ≥ 0, qw ≥ 0, r ≥ 0; (4.6d)
0 ≤ ym ≤ 1, (4.6e)

With the new formulation (4.6), the optimal solution can be obtained by applying
the first-order optimality conditions. However, the complication is that moving deci-
sion variables shifts the demarcation lines in Figure 4.1, hence the shape, not just the
area, of the three market segments. This means the retailer’s profit given by (4.6a)
would be a non-smooth, piece-wise function of the decision variables. Since optimiz-
ing such a function is not generally amenable to analysis, a numerical algorithm is
needed to solve the most general version of Problem (4.6). We shall present such an
algorithm in Section 4.4. Before we do that, let us first analyze a special version of
(4.6) that has a smooth objective function.

4.3 Special case
In order to simplify the analysis of the heterogeneous model, we introduce a couple
of additional assumptions.

Assumption 4. In addition to Assumption 3, we further assume:

1. The demand is uniformly distributed within a range [D,D].

2. Customers are uniformly distributed in the rectangle area formed by the lower
and upper bounds of their hassle costs.

3. The retailer adopts a uniform pricing strategy, i.e., it always sets p = p0.

4. All store space is devoted to shelf inventory. That is, qw = 0.

5. The retailer always keeps a constant probability of on-time delivery for its mem-
bership channel. That is, ym is fixed.

6. The store space A is unlimited, i.e., Constraint (4.5b) will never be activated.

7. Hs = v − p0 and Hl = θ(v − p0).
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Assumption 4.2 implies that the share of each channel i, defined in Eq. (4.4), can
be simplified as

xi = Si

S
. (4.7)

Assumptions 4.3 and 4.4 each fix one of the five decision variables (p and qw).
Assumption 4.5 fixes the level of service for the membership channel ym. With

Assumption 4.1, we can invoke Eq. (3.38) to establish a one-to-one correspondence
between ym and q/xm, i.e.,

q

xm
= D −

√
(1 − ym)(D2 −D2) = βh

m. (4.8)

Since ym is given, the decision variable q can be represented by xm, hence is eliminated
from the optimization problem. By promising an unlimited store space, Assumption
3.5 further avoids the analytical challenges posed by the complementarity condition.

We can write the utilities associated with different channels as

us = v − p0 − hs; (4.9a)
uo = θ(v − p0) − hl; (4.9b)
um = θ(v − p0) − r − (1 − ym)hl. (4.9c)

Assumptions 4.7 restricts the feasible range of the hassle costs with its natural upper
bounds. Note that if hs > v − p0, the store channel can never yield a positive utility.
The same applies to the membership channel when hl > θ(v − p0). Moreover, given
Assumption 4, point-E should always lie above point-F in Figure 4.1-a, and they both
always lie below point-O. Also, the slopes of all three demarcation lines will remain
constant. This means the shape of the three channel segments will not change with
the remaining decision variables (r and qs). Expressly, the three areas can be specified
as:

So = − 1
2y2

m

r2 + Hl

ym
r; (4.10a)

Sm = 1 + ym

2y2
m

r2 −
(
Hl + Hl

ym

)
r + (1 + ym)H2

l

2
; (4.10b)

Ss = Hlr +HsHl − (1 + ym)H2
l

2
− 1

2ym
r2. (4.10c)

Then, xi can be obtained using Eq. (4.4). Clearly, in this special case, xi only depends
on r.

Now, the retailer’s decision problem is to find the optimal store inventory qs and
membership premium r to maximize the profit, i.e.,

max g(qs, r) = (p0 + α− cp)E(min(xsd̃, qs)) − csqs + (xm + γxo)d̄ψ + (rd̄− cdτβ
h
m)xm

(4.11a)
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subject to:
r ≤ ymθ(v − p0); (4.11b)
qs ≥ 0, r ≥ 0. (4.11c)

Assuming Constraint (4.11b) be inactive, the first-order condition with respect to
qs is

∂g

∂qs
= (p0 + α− cp)

(
1 − F ( qs

xs
)
)

− cs = 0, (4.12)

which leads to

qs

xs
= F−1

(
1 − cs

p0 + α− cp

)
= βh

s . (4.13)

Thus, regardless of the choice of r, the optimal qs must always equal the product of
a constant, βh

s , and the market share of the in-store channel, xs, which is a function
of r. In other words, like the market share, qs can also be expressed as a function
of r. Replacing qs in Eq. (4.11) with βh

s xs, we arrive at the following optimization
problem with respect to r:

max g(r) =
∑

i∈{o,s,m}

κixi + d̄rxm (4.14)

where

κs = (p0 + α− cp)ysd̄− csβ
h
s ;κm = ψd̄− cdτβ

h
m;κo = γψd̄, (4.15)

From Eq. (4.10) we have

∂xm

∂r
= (1 + ym)r

θy2
mH

2
s

− 1
Hs

− 1
ymHs

; (4.16a)

∂xo

∂r
= − r

θy2
mH

2
s

+ 1
ymHs

; (4.16b)

∂xs

∂r
= − r

θymH2
s

+ 1
Hs

; (4.16c)

Thus, the optimality condition requires

∂g

∂r
=

∑
i∈{o,s,m}

κi
∂xi

∂r
+ d̄

(
xm + r

∂xm

∂r

)
= ι0r

2 + ι1r + ι2. (4.17)

where

ι0 = 3d̄
2θy2

mH
2
s

; (4.18a)
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ι1 = κm − κo − 2d̄θymHs(1 + ym)
θy2

mH
2
s

; (4.18b)

ι2 = κo + ymκs − (1 + ym)κm

ymHs
+ d̄θ(1 + ym)

2
(4.18c)

g(r)

dg(r)/dr

local maximum

local minimum

r

Figure 4.2: Illustration of the profit as a
function of the membership premium and
its derivative in the special case.

A “reasonable” system will pose several
conditions on these parameters. First, ι1
should always be negative. Otherwise,
the derivative of g will continue to in-
crease as r increases from zero, indicat-
ing the profit will indefinitely grow at a
faster pace, an implausible scenario. Sec-
ond, ι2 should always be positive. Had
this not been the case, the derivative of
g will be negative when r = 0. It means,
even at r = 0, the retailer would still
lose money by slightly raising the mem-
bership premium. This could only oc-
cur if the delivery cost is so high that of-
fering a membership channel is entirely
unprofitable. Third, ∂g/∂r = 0 should
have two real roots, and the optimal pre-
mium is the smaller of the two. This
requirement derives from the fact that
the smaller root is located where g(r)
achieves a local maximum, see Figure 4.2
for an illustration. If ∂g/∂r = 0 admits

no real roots, the profit will always rise with r, never experiencing a downturn. That
the smaller root must also be positive is guaranteed by the fact that ι2 > 0, as dis-
cussed above. Finally, the left root of ∂g/∂r = 0 should be smaller than ymHl, or the
profit would not peak even when r reaches a level that would render the membership
channel unattractive to everyone.

To summarize the above discussion, the optimal solution to the special version of
the retailer’s problem can be obtained by

r∗ = −ι1 −
√
ι21 − 4ι0ι2

2ι0
. (4.19)

In addition, the following conditions should be satisfied:

ι1 < 0, ι2 > 0, ι21 − 4ι0ι2 > 0, r∗ < ymHl. (4.20)
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4.4 Solution algorithm for the general case
To solve Problem (4.6), we devise a specialized gradient ascent algorithm. The most
computational challenging task is to evaluate the objective function (4.6a), which not
only is non-smooth (as the function form changes with the decision variables) but
also involves double integration (see Eq. (4.4)).

Figure 4.3 and Figure 4.4 enumerate all the possible functional forms for (4.6a).
When r/ym ∈ (hl, hl), there are ten different scenarios, see Figure 4.3. When
r/ym ≤ hl or r/ym ≥ hl, there are seven scenarios each, see Figure 4.4-(a) and
4.4-(b) respectively. All twenty-four cases are represented as a piecewise linear func-
tion that can be evaluated numerically. The gradient of the function is then evaluated
via automatic differentiation (we use the implementation provided by PyTorch in this
study).

Algorithm 1 gives the pseudo-code. Because the problem is non-convex and non-
linear, the gradient ascent method can be easily trapped by local maxima. To address
this issue, we always solve the problem multiple times, each starting from a randomly
selected initial point. The best solution obtained in all runs is taken as an approx-
imate global solution. In each iteration, we only move the current solution along
one dimension (see line 10 in Algorithm 2), because the complex constraint structure
makes it counter-productive to attempt ascending in more than one dimension.

Algorithm 2 describes a heuristic procedure aiming to choose a dimension along
which the potential to improve the objective function value is the greatest. The
algorithm first divides the five variables into two groups based on the constraint
structure. Then, for each group, we pick from all variables that are not “stuck” (i.e.,
ascending along the gradient is still feasible) the one that has the largest directional
derivative (line 5-12 in Algorithm 2). We then compare the two candidates from each
group and make a choice based on the magnitude of their directional derivatives (lines

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Market share when r/ym ∈
(
hl, hl

)
.
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(a) Market share when r/ym ≤ hl. (b) Market share when r/ym ≥ hl.

Figure 4.4: Market share when r/ym /∈
(
hl, hl

)
.

13-22 in Algorithm 2).
Once the ascending dimension is determined, a line search is performed using a

backtracking algorithm. If the line search fails to improve the objective function value,
no change will be made, we simply set the current solution equal to the previous one.
Each time the algorithm fails to make a meaningful improvement, we record it as an
idle iteration. The algorithm is terminated when either the maximum number of iter-
ations is reached or the number of consecutive idle iterations reaches a predetermined
limit.
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Algorithm 1 Gradient ascent algorithm for the general model.
1: Input: The number of random initial solutions IP , the maximum number of iterations allowed

U for each initial solution, convergence criteria ϵ1 and ϵ2, and the maximum number of idle
iterations E.

2: Set initial point indicator ip = 0.
3: while ip < IP do
4: Initialization
5: Select a random initial solution y0 from the feasible region defined by (4.6b)-(4.6e).
6: Evaluate g0(y0) using (4.6a).
7: Set the iteration index u = 0, and the idle iteration index e = 0.
8: while u < U and e < E do
9: Set vector bu such that bu[i] = True if yu [i] is involved in a binding constraint.

10: Choose a decision variable identified as ith in the vector using Algorithm 2,
11: Compute the derivative g′

i = ∂g(yu)
∂yu[i] .

12: Set u = u + 1 and the new solution y(u) = yu−1.
13: Line search
14: Initialize step size β.
15: while β > ϵ2 and g(y(u)) − g(y(u−1)) ≤ 0 do
16: Update yu [i] = yu−1 [i] + βg′

i.
17: Update g(y(u)) and set β = β/2.
18: end while
19: if g(y(u)) − g(y(u−1)) < 0 then
20: Set y(u) = y(u−1) and update g(y(u)).
21: end if
22: if |g(y(u)) − g(y(u−1))| < ϵ1 then
23: Set e = e + 1.
24: else
25: Set e = 0.
26: end if
27: end while
28: Update the global optimal solution y∗ with the best solution recorded for ip.
29: Set ip = ip + 1.
30: end while
31: Output: y∗.
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Algorithm 2 Dimension selection method in gradient ascent
1: Input: The vector of constraint binding status bu, the gradient ∂gu(yu)

∂yu[·] , gradient thresholds
ϵ1 and ϵ2.

2: Initialization:
3: Separate the five decision variables into two groups� K1 = ix({qs, qw}), K2 = ix({p, r, ym}),

where ix(a) returns the index of variable a.
4: Initialize il = −1, l = 1, 2.
5: for l = 1, 2 do
6: Set j = 0, G = 0.
7: for each j ∈ Kl do
8: if bu [j] is False or ascending along the gradient is feasible then
9: If ∂g(yu)

∂yu[j] > G, set G = ∂g(yu)
∂yu[j] , il = j.

10: end if
11: end for
12: end for
13: if i1 = −1 then
14: Set i∗ = i2.
15: else
16: if ∂g(yu)

∂yu[i2]] ≥ ϵ2 then
17: Set i∗ = i2.
18: else if ∂g(yu)

∂yu[i1] ≥ ϵ1 then
19: Set i∗ = i1.
20: else
21: Set i∗ = i2 when u is even and i∗ = i1 when u is odd.
22: end if
23: end if
24: Output: i∗.



CHAPTER5
Case Studies

In this chapter, we conduct case studies to better understand the trade-offs between
various retail decisions and to test the sensitivity of the proposed omnichannel models
to important inputs. We will start with cases where the analytical results are available
for validation, and then deal with more realistic scenarios. In what follows, we first
describe the settings of the experiments, including how the parameters are estimated
from real-world data (Section 5.1). Then, Sections 5.2 and 5.3 report and analyze
results for the base model and the general model, respectively.

5.1 Experiment settings
We assume (i) the daily demand be uniformly distributed between D = 4000 to
D = 8000; (ii) the default price for one unit of the generic product be p0 = $50; (iii)
the product be valued by all customers at v =$80; (iv) the unit cost of the product
(including any costs not covered by the fulfillment decisions considered in our model
of omnichannel retail) be cp =$40 (this corresponds to a 20% gross profit margin when
the product enters into the final fulfillment stage). We note that p0 =$50 is roughly
the amount that an average household spend at Amazon and Walmart combined
in a week in 2020. This number is estimated using per capital retail spending in
2020 (about $17000), the average number of persons per household (2.6), and the
collective share of Amazon and Walmart in retail (about 6%). Since each household
is assumed to purchase one unit per week, the retailer is serving on average 6000×7 =
42, 000 households, even though on any given day, only 6000 (the average demand
per assumption) actually show up in their store or online platform. Given about 123
million households in the US, we can see ours is roughly a 1/3000 model of the US
retail market configured according to the combined sales of Walmart and Amazon.

We construct two representative omnichannel retailers, modeled after Walmart
and Amazon, respectively, referred to hereafter as Retailer W and Retailer A. We
next discuss how the model parameters are estimated for each retailer.

5.1.1 Retailer W
For the in-store channel, the hassle cost hs is estimated based on the average travel
time and fuel cost for a round trip, plus a search cost. Holmes [Hol11] estimates
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the average distance between an American home and the nearest Walmart is about
6.7 miles in 2005. According to the annual report from Walmart’s official website,
there were 3800 stores in the U.S. in 2005. This number increased to 4743 in 20211.
Accordingly, we estimate the current average distance to the nearest Walmart store is
about 6 miles. Moreover, each customer is assumed to set a 5-minute penalty to the
search for the product. Then, hs is estimated at $9, using an average value of time
(VOT) of $19 (as estimated by National Bureau of Economic Research2), an average
driving speed of 25 miles per hour (mph), and an average fuel cost of $0.15 per mile.

For the two online channels (with or without membership), the hassle cost hl is
set according to the willingness to pay for same-day delivery, which is estimated at
10% of the product3. Thus, since the product is priced at $50, the default value for
hl is $5. We also estimate Walmart has an online-sale return rate of 20%, which is
about the average across the entire e-commerce sector4. Thus, the parameter θ = 0.8.

In 2020, Walmart had a total revenue of $559B and spent about $44B on inven-
tory5. Thus, we estimate the inventory cost amounts to about $2 for one unit of
our generic product (assuming about half of the inventory costs are incurred in the
processes covered by our model). Moreover, We conjecture the cost of storing the
product on the shelf is three times as expensive as storing it in WH (due to the
different requirements for space). This leads us to set cw = $1, and cs = $3. Accord-
ing to the inventory cost, we set the required space for on-shelf and WH storage as
as = 3.6m2 and aw = 1.2m2, respectively. This estimation of the unit storage space
may seem arbitrary, but it need not concern us, since how many products the store
can accommodate depends not only on the unit storage space but also on the total
store area A. To “calibrate” a benchmark model, we shall determine the value of A
that, when plugged into the base model, will yield the channel shares observed for
Walmart (about 87% in-store sales). Since A will be determined after aw and as are
selected, the scale of the two parameters does not matter.

Estimating cross-sale profit is not easy. Previous studies [LSW05; VY08; SLL14;
GM14] suggest retailers may generate 13% to 177% more profit from cross-selling.
However, since the consumption of the generic product per household is fixed in our
setting, it is difficult to explicitly model sales coming from “other” products. Instead,
we shall assume cross-sales generate an extra 10% profit over the sales of the generic
product (i.e., α =$5) – that is, the total sales remain the same, but the cross-sale
effect helps boosts the profit margin. We will test the impact of α in the sensitivity
analysis. To estimate the return cost cr, we refer to Amazon’s flat return charge per
shipment, which ranges from $2 to $86. Since we could not find Walmart’s policy on

1htps://stock.walmart.com/investors/financial-information/annual-reports-and-
proxies/default.aspx

2https://www.nber.org/papers/w28208.
3https://www.statista.com/statistics/1011198/willingness-to-pay-for-same-day-delivery-from-

outdoor-specialty-retailers-us/
4https://www.invespcro.com/blog/commerce-product-return-rate-statistics/
5https://www.macrotrends.net/stocks/charts/WMT/walmart/revenue
6https://www.amazon.com/gp/help/customer/display.html?nodeId=GXM7UWCH63ZJHAVP
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return charges, we set cr to a conservative value of $3 in the range given by Amazon.
The unit delivery cost cd is estimated as the driver’s wage plus the fuel cost per

hour. The wage for a Walmart driver is set to $207. As for the fuel cost, we estimate
an average delivery speed of 15 miles/hour at a fuel efficiency of 10 miles/gallon and a
fuel price of $4/gallon. Thus, cd = 18 + 1.5 × 4 = $24/hour. To estimate the delivery
time per order (τw and τ), we first note Amazon hires about 250,000 drivers, and
according to information found on the internet, each driver delivers about 100-200
packages per day. Suppose each driver works 10 hours a day and recalls Amazon’s
2021 revenue is about $450B. We can estimate the value of each package at about $33
and delivering a package costs 5 minute delivery time (assume 120 packages delivered
for 10 hours). Thus, to deliver our unit product valued at $50 requires 50/33×5 = 7.5
minutes. The vast majority of Amazon’s packages should be delivered from DC. Since
Walmart has much fewer DCs than Amazon, the value of its per capita delivery time
from DC should be larger than 7.5 minutes. However, without a spatial model, it
is difficult to estimate the difference with proper justification. For now, we will set
τ = 10 minutes and τw = 4.8 minutes for Walmart.

The default parameter values for Retailer W are reported in Table 5.1.

7https://www.indeed.com/cmp/Walmart/salaries/Delivery-Driver

Table 5.1: Default values of main parameters used in the experiments for Retailer
W.

Variable Default Value Description
hs $9 hassle cost for in-store shopping
hl $5 waiting cost for normal online shopping.
p0 $50 original price of the product (for online shopping).
v $80 customer’s valuation for the product.
cp $40 cost to acquire the product.
D 8000 upper bound of the total demand.
D 4000 lower bound of the total demand.
α $10 cross-sale profit.
cs $3 in-store inventory cost.
cw $1 inventory cost for the mini-warehouse.
cr $3 return cost per order.
cd $26/hour unit delivery cost (labor and fuel).
γ 0.5 retailer’s online shopping market share.
θ 0.8 probability that an online order is not returned.
τw 4.8 minutes delivery time per order from mini-warehouse.
τ 10 minutes delivery time per order from DC.
as 3.6 m2 area occupied by a unit of product in store.
aw 1.2 m2 area occupied by a unit of product in the mini-warehouse.
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5.1.2 Retailer A
Retailer A differs from Retailer W only in the following aspects.

1. The number of store locations operated by Amazon is about one-eighth that
by Walmart. Accordingly, the average distance between a customer and the
nearest store for Retail A is assumed to be 50% more than that for Retailer W.
Thus, hs is set to $12 for Retailer A.

2. Retailer A requires less delivery time per order from DC because it has a greater
number of DCs than Retailer W. As explained earlier, τ is set to 7.5 minutes
for Retailer A.

3. Retailer A enjoys a lower-than-average online order return rate because it has
more experience with e-commerce. The average return rate of Amazon in 20218

was around 5% to 15%. Accordingly, we set θ = 0.9 for a return rate of 10%.

4. Retailer A boasts a greater supply chain efficiency. We estimate this advantage
be translated to a 50% reduction in the per capita return cost. Accordingly, cr

is set to $2.

5. Retailer A’s delivery driver makes $18 an hour based on Glassdoor 9, about $2
less than that for Walmart couriers. Thus, cd is set to $24 per hour.

Table 5.2 summarizes the values of all five differentiating parameters for each retailer.

5.2 Base model
In Section 5.2.1, we first calibrate the model for Retailer W, or Model-W in short —
by matching the model-produced channel shares with real-world observations — to
estimate the floor space A compatible with the scale of our model (1/3000). Using

8https://www.envisionhorizons.com/blog/using-amazon-return-data-to-your-advantage-and-
reducing-return-rates

9https://www.glassdoor.com/Hourly-Pay/Amazon-Delivery-Driver-Hourly-Pay-
E6036_D_KO7,22.htm

Table 5.2: Parameters that take different values for Retailers A and W.
Variables Retailer A Retailer W
In-store shopping hassle cost (hs) $12 $9
Return cost per order (cr) $2 $3
Delivery cost per hour (cd) $24 $26.
Return rate (1 − θ) 0.1 0.2
Delivery time per order from DC (τ) 7.5 minutes 10 minutes
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the calibrated parameter A we then build Model-A and compare it with Model-W in
Section 5.2.2. Section 5.2.3 conducts sensitivity analyses on several critical parame-
ters.

5.2.1 Benchmark
The current share of Walmart’s online sales is 13% of the total sales. We found, for
the given demand range and other parameters, when the store area A = 22800 square
meters, the model yields a share of about 13% for the online channel.

The optimal decision variables, the channel shares, and the optimal profit of the
calibrated Model-W (treated as the benchmark) are given below:

Decisions: q∗
s = 6333, q∗

w = 0, q∗ = 579, p∗ = 51.69, r∗ = 3.70;
Channel share: x∗

s = 0.87, x∗
m = 0.13, x∗

o = 0;
Profit: g∗ = $73574.14;

To maximize profit, Retailer W should use all store space for in-store shopping in-
ventory (q∗

s = 22800/3.6 = 6333) and maintains a same-day delivery capacity of
q∗ + q∗

w = 579 per day. The in-store and membership channels will on average each
attract, respectively, 5220 and 780 customers per day. The stock-out probability in
the store is 1.0% (1 − y∗

s ) and the on-time delivery rate for the membership channel
is 74.0% (y∗

m). Retailer W has to levy a 3% markup for its in-store sales, in order to
offset the relatively high inventory cost. The membership premium r is $3.7 per week
or about $15/month. This is slightly higher than what Walmart Plus is charging for
its membership ($12.95).

In total, Retailer W generates a profit of $73574.14 per day, translated to $1.75
per household or $3.23 per square meter of store floor space. Using this profit, we can
estimate Retailer W’s annual total profit amounts to 73574.14 × 365 × 3000 ≃ $80B.
To put these numbers in perspective, Walmart turned a total profit of about $130B
in 2020 and its U.S. market sales approximately account for 70% of the total sales.
Thus, we estimate Walmart’s total profit generated by the U.S. market is about $91B,
fairly close to our estimate. Also, Walmart has about 4700 stores in the US, with an
average floor space of 16740 square meters ( 180000 square feet) per store. Thus, its
profit per square meter of store floor space per day is about $3.17, which is, again,
close to our estimate.

5.2.2 Retailer W vs. Retailer A
For Retailer-A, its floor space is estimated to be about one-eighth of that for Retailer-
W, which amounts to A = 2850 square meters for Retailer-A.

The results of the main decision variables for both retailers are reported in Table
5.3. We find Retailer A abandons the in-store channel altogether, preferring instead
to use all store space for the fulfillment of orders from the membership channel. The
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Table 5.3: Optimal solutions for Retailer A and Retailer W.
Retailer xs xm xo qs qw q g p r

A 0 1 0 0 2250 3350 $62580.0 $0 $4.4
W 0.87 0.13 0 6333 0 579 $73574.14 $51.69 $3.70

retailer would make about $11000, or 15%, less profit than Retailer W. At $4.4 a week
(roughly $18/month10), its membership premium is almost 20% higher than Retailer
W’s. Evidently, Retailer A prefers the membership channel to the in-store channel
because it enjoys a lower return rate (10% vs 20% for Retailer W) for online orders
and a higher delivery efficiency (both cd and τ are smaller).

Table 5.4 details and compares the revenue and cost components associated with
each channel for both retailers. Both retailers would yield about $300k in revenue per
day. This number scales up roughly to an annual revenue of $328.5B. In comparison,
Amazon’s total revenue in 2020 is about $386B, which presumably includes sales
outside the U.S. For Retailer A, the income from membership sales amounts to about
10% of the total revenue, an order of magnitude higher than that for Retailer W.

Retailer W spends much more on inventory (almost an order of magnitude higher)
whereas Retailer A spends much more on delivery and reverse logistics (about 5 times
higher). Adding inventory, delivery, and return costs together amount to about 6%
and 7.4% of total sales for Retailers A and W, respectively. Thus, Retailer A has a
leaner operation, thanks to its much smaller physical footprint. However, Retailer

10As a comparison, Amazon currently charges $15 for Amazon Prime membership.

Table 5.4: Revenue and cost table for Retailer A and Retailer W.
Revenue Retailer A Retailer W
Store sales revenue $0 $266964.24
Online (membership) sales revenue $270000 $31154.62
Online (membership) fee revenue $26400 $2879.91
Total sales revenue $296400 $300998.77
Cost
Inventory cost $2250 $19000
Delivery cost $14370 $2561.28
Return cost $1200 $467.32
Acquisition cost $216000 $231501.70
Total Cost $233820 $253530.30
Profit
Cross-sale profit $0 $26105.67
Total profit $62580 $73574.14
Gross profit ratio 21.1% 24.4%
Inventory cost ratio 0.8% 6.3%
Delivery cost ratio 4.8% 0.9%
Return cost ratio 0.4% 0.2%
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W has a higher profit margin: 24.4% compared to 21.1% for Retailer A. At first
glance this result is puzzling. How could a seemingly more efficient business be
less profitable? A closer look reveals the culprit is cross-sales. Abandoning the in-
store channel means Retailer A forgoes all potential benefits from cross-sales. These
benefits can be substantial. Indeed, at the default level set in our model ($5 earned
profit per store visit), more than a third of all profits earned by Retailer W are
attributed to cross-sales. Without this extra profit, the in-store channel would not
have been chosen by Retailer W.

5.2.3 Sensitivity analysis
Given the importance of cross-sales benefits and the difficulty of directly measuring it
in practice, this section performs a sensitivity analysis on the parameter α (the profit
in dollar values per store visit generated from cross-sales). We also test the model’s
sensitivity to the online return rate (1 − θ) and the gasoline price. The latter is not a
parameter of our model but affects the estimation of in-store hassle cost hs and the
hourly delivery cost cd. In each case, the sensitivity results for both Retailers W and
A are reported and compared.

Figure 5.1 shows how the main model outputs, including channel share (plots
(a)-(b)), pricing (plots (c)-(d)), inventory (plots (e)-(g)) decisions and total profit
(plot (h)) vary for both retailers as α increases from 0 to $20. The most important
observation from Figure 5.1 is the existence of a “lower bound” for α, over which
each retailer’s preference would switch from the membership channel to the in-store
channel. For Retailer W, the threshold is just shy of $5, whereas it is about $5.6
for Retailer A. In other words, to make the in-store channel attractive, the cross-sale
effect needs to be stronger for Retailer A than Retailer W, but the discrepancy is
relatively small. After α exceeds that threshold, the share of the instore channel
continues to climb (accompanied by a slow decline in the price in-store, see Figure
5.1-(c)), though much more lowly for Retailer A than for Retailer W (see Figure
5.1(a-b). For Retailer W, there is actually an “upper bound” on α (about $16), at
which the share of the in-store channel maxes out at 1.0. Thus, if the cross-sale effect
is sufficiently large, Retailer W would prefer to have everyone in the store. This does
not mean it has enough space to meet all demands all the time. Instead, the strategy
simply generates enough cross-sale profits to offset the sales lost to stock-out.

When α lies below their respective lower bound, both retailers will use all store
space to fulfill online orders (Figure 5.1(e-f)). In fact, this is the only fulfillment
channel for Retailer W in this case, since its physical space is sufficiently large. On
the other hand, fulfilling orders from DC is critical to Retailer A, but not so much
to Retailer W (Figure 5.1(g)). Indeed, Retailer W would only fulfill orders from DC
when α lies between the lower ($4.75) and upper ($15) bounds.

Finally, Figure 5.1(d) indicates the membership premium is not affected by α
at all. As for the total profit, we note (see Figure 5.1(h)) (i) it gradually increases
with α after it exceeds the lower bound; (ii) when α is below the threshold, Retailer
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Figure 5.1: Sensitivity of the cross-sale profit (α) on (a) share of in-store channel xs,
(b) share of membership channel xm, (c) in-store price p, (d) membership premium
r, (e) in-store channel capacity qs, (f) in-store warehouse capacity qw, (g) delivery
capacity q, and (h) total profit g.
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A is more profitable than Retailer W; and (iii) due to its larger physical presence,
Retailer W’s profit is much more sensitive to α than Retailer A. Finally, the little
jump in profit at the lower bound for Retailer W is a curious anomaly that requires
explanation. Specifically, why is there a jump for Retailer W, but not for Retailer
A? The direct reason is that the store was fully consumed for Retailer A, but not for
Retailer W. This can be seen from the fact that only Retailer W delivers nothing from
DC when α is below the threshold (i.e., q = 0, see Figure 5.1(g)). When α crosses the
line, the retailer’s channel preference suddenly shifts, and consequently, all consumers,
indistinguishable as they are, are induced to switch channels simultaneously. This
movement consumes all store space, abruptly activating the space constraint and
causing a jump in the profit. In reality, such a discontinuity is unlikely to occur,
because consumers are heterogeneous. We shall address this issue in Chapter 4.

In Figure 5.2, we let θ (1 minus the online return rate) vary from 0.5 to 1.0 for
each retailer and compare the outputs of their corresponding models. Similar to α,
there is a lower bound for the return rate – 0.12 for Retailer A and 0.18 for Retailer
W – below which the membership channel dominates (see Figure 5.2(a-b)). Over that
lower bound, there is a sudden drop in the share of the membership channel, followed
by a graduate decline as the return rate continues to rise. Interestingly, a worsening
return rate would strengthen the in-store channel’s appeal, allowing the retailer to
charge a higher price in-store (Figure 5.2(c)). For both retailers, the in-store price p
rises from about $50 at the activation of the in-store channel to about $60 when the
return rate reaches 50%.

When the return rate exceeds the threshold, the retailers first stop fulfilling orders
from WH (see Figure 5.2(f)). The number of orders delivered from DC first has a
sudden jump at the threshold, and then begins to decrease as the return rate is further
worsened ((see Figure 5.2(g)). In the case of Retailer W, it is eventually reduced to
zero after the return rate hits about 45%.

Again, we see the return rate has no impact whatsoever on the membership pre-
mium (Figure 5.2(f)), but its impact on the total profit is intriguing. For Retailer A,
the profit decreases monotonically with the return rate (Figure 5.2(g)). This is easy
to understand: a higher return rate reduces sales and drives up the return cost. We
find the same is true for Retailer W, up to the point where the return rate reaches
the threshold. When that threshold is exceeded, however, the trend is suddenly re-
versed. First, there is a jump in profit similar to what we have seen in Figure 5.1(g).
More importantly, the profit for Retailer W continues to shoot up as the return rate
increases. How could lowering the return rate for its membership channel be a bad
thing for Retailer W’s profit? The reason is the conflict between Retailer W’s strong
preference for the in-store channel and the effect of the return rate on the customer’s
preference for the membership channel. When the return rate is reduced, customers
find the membership channel more attractive. However, the retailer still wants them
to use the store channel. To avoid its own membership channel cannibalizing the
market share of the more profitable in-store channel, the retailer must lower the price
in-store to offset the improvement in the utility of the membership channel. This
hurts its profit but is still the best action available. We do not observe this para-
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Figure 5.2: Sensitivity of θ (1-return rate) on (a) share of in-store channel xs, (b)
share of membership channel xm, (c) in-store price p, (d) membership premium r, (e)
in-store channel capacity qs, (f) in-store warehouse capacity qw, (g) delivery capacity
q, and (h) total profit g.
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doxical phenomenon for Retail A because its much smaller physical space limits the
profitability of the in-store channel.

Figure 5.3 explores the impact of fuel price, which ranges from $2/gallon to $8/gal-
lon, on the performance of omnichannel retail. Recall that, in our model, the fuel
price is positively associated with the hassle cost for the in-store channel hs and the
hourly delivery cost cd. The default fuel price is $3 dollars/gallon, comparable to the
U.S. national average in early 2021. It turns out the fuel price has a rather dramatic
effect on Retailer W. Once the fuel price exceeds about $3.5, the in-store channel is
abandoned by the retailer(Figure 5.3(a-c) because the elevated hassle cost discourages
customers from driving to the store.

To counteract the rising fuel price, both retailers would lower their membership
premium r while reducing the delivery capacity q. A smaller q is bound to increase
the likelihood of failing to fulfill the membership orders on time (see Figure 5.3(d, f,
g)). That is, ym will drop, dragging down the membership channel utility. Thus, a
rising fuel price will force both retailers to lower the level of service at a discounted
price. This is somewhat counter-intuitive because a customer would naturally expect
the membership to go up when a higher fuel price drives up the delivery cost. Finally,
while a higher fuel cost hurts both retailers, it hurts Retailer W much more. Indeed,
when the fuel cost exceeds $3.5 dollars, Retailer A outperforms Retailer W in terms
of the total profit, thanks to its more efficient online operations.

5.3 General model
In Section 5.3.1, we validate the analytical results for the special case of the general
model (Figure 4.2) of both Retailers A and W. We then solve the general model with
different hassle distributions fh in Section 5.3.2 and Section 5.3.3.

5.3.1 Special case
In the special model, ym is an input rather than a variable. In our experiments, we
set ym to be 74% and 88% for Retailer W and Retailer A, respectively, which are
consistent with the results in Section 5.2.2. Unless otherwise specified, the parameter
values listed in Table 5.1 and Table 5.2 will be used for Retailer W and Retailer A,
respectively. Assumption 4 also stipulates that A is unlimited, p = p0 and qw = 0.
Indeed, the only fulfillment decision left to be optimized is the membership premium
r.

Table 5.5: Optimal solutions of the special model with customer heterogeneity.
Retailer xs xm xo qs q r g

A 0.51 0.24 0.24 3689 1365 $7.93 $61237.21
W 0.54 0.20 0.26 3893 908 $7.10 $55695.96
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Figure 5.3: Sensitivity of the fuel price on (a) share of in-store channel xs, (b)
share of membership channel xm, (c) in-store price p, (d) membership premium r, (e)
in-store channel capacity qs, (f) in-store warehouse capacity qw, (g) delivery capacity
q, and (h) total profit g.
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The main results are reported in Table 5.5. As we can see, Retailer A’s more
efficient delivery operations allow it to charge a higher membership premium (about
$8/week), which yields a 10% higher profit than Retailer W. Whereas the two would
build a similar in-store capacity, Retailer A can afford to maintain a delivery capacity
almost 50% higher than that of Retailer W (1356 vs. 908). Both retailers leave about
a quarter of all customers to the regular online channel. Retailer A fares slightly
better in terms of the total share of customers served, with a 2 percentage point
advantage.

Using the default inputs to the model, Figure 5.4 plots the function g (solid lines)
and its derivative dg/dr (dashed lines) for Retailers W (blue) and A (red). We can see
the shape of both curves closely resembles their counterparts in Figure 4.2, indicating
all conditions listed in Eq. (4.20) are indeed satisfied. Within the reasonable range
of r (0-$10), the two profit curves are very similar, although the profit for Retailer A
always stays above that for Retailer W.

5.3.2 General case with uniform hassle cost distribution
Assuming hassle costs be uniformly distributed, we solve and compare three general
models, each corresponding to a different value of γ, the percentage of the customers
choosing the regular online channel who decide to stay with the retailer. If γ = 0,
for example, it means the retailer will lose all regular online channel customers. By
default, γ = 0.5. We also test the cases where γ is set to 0 or 0.8. Like before, we
first calibrate the model using the current share of Walmart’s online sales. We fix the
floor space A at the value obtained before and γ at 0.5. When Hl = 10 and Hs = 15,

Figure 5.4: Illustration of the profit as a function of the membership premium and
its derivative in the special case.
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Model W approximately produces the observed market share. Thus, we use these
values as calibrated upper bounds.

In the default setting, as shown in Table 5.6, we find considering customer het-
erogeneity causes a major shift in the fulfillment strategies for both retailers. A
considerable amount of customers, 15% for Retailer W and 29% for Retailer A, are
now left to the regular online channel. Compared to the optimal solution of the base
model, the share of the membership channel decreases from 13% to zero for Retailer
W, and the share of the in-store channel increases from zero to 14% for Retailer A.
The main reason is, there will always be customers whose waiting costs (hl) are rela-
tively low when hl is uniformly distributed from 0 to Hl and these customers would
like to select the normal online channel which means the retailers will lose half of
them (γ = 0.5). So, to maximize the profit, Retailer W tends to expand the in-store
channel, which is the most profitable channel for it, to reduce the market share of the
normal online channel, while Retailer A has to decrease the membership fee and ex-
pand its in-store channel to limit the market share of its normal online channel. The
in-store prices have risen dramatically. The markup for in-store sales, on the other
hand, reaches 40% and 20% of the online price for Retailers A and W, respectively.
Such high prices become viable because many customers have a cost structure that
tolerates them. For example, a customer with a high hl and hs would stick to the
membership channel and be willing to pay more for a high premium. On the other
hand, a customer with a higher hl and a low hs would stick to the in-store channel
even for fairly high in-store markups. Thus, the ability to “exploit” these high-value
customers drives up the price. After customer heterogeneity is taken into considera-
tion, Retailer W makes about 50% more money while Retailer A makes about 2% less.
Table 5.7 further shows the total sales for Retailer A drop about 16% (from about
$300K to about $250K) compared to the base model. The gross profit ratio increases
substantially, especially for Retailer W, who gains almost 7 percentage points.

When γ is reduced from 0.5 to 0, the retailer loses all regular online sales. In
response, they ramp up both the membership channel and in-store channel by re-
spectively lowering the membership premium and in-store markup, see Table 5.6. In
the end, Retailer A will lose about 5% of all sales, and about 5% of the profits. For
Retailer W, its lost sales amount to about 12% and the lost profit about 2.5%. The
gross profit ratio decreases a little for both retailers when γ decreases from 0.5 to
0. The reason is that the regular online channel has a fixed profit ratio of 20% per

Table 5.6: Optimal solutions of the general model with customer heterogeneity.
γ Retailer xs xm xo qs qw q p r g

0 A 0.14 0.84 0.02 750 0 3088 $70 $0.1 $58593
W 0.88 0 0.12 6090 0 0 $61 $3.7 $115675

0.5 A 0.14 0.57 0.29 750 0 2102 $72 $1.8 $61625
W 0.85 0 0.15 5909 0 0 $62 $4.1 $118686

0.8 A 0.13 0.32 0.54 750 0 1882 $73 $5.2 $68738
W 0.83 0 0.17 5764 0 0 $62 $4.4 $120849
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Table 5.7: Revenue and cost table for Retailer A and Retailer W.
γ = 0 γ = 0.5 γ = 0.8

Revenue Retailer A Retailer W Retailer A Retailer W Retailer A Retailer W
Store sales revenue $50517 $314253 $51297 $307552 $51280 $301857
Normal online sales $0 $0 $38889 $17956 $117064 $33178
Membership channel sales $226942 $0 $154478 $0 $87484 $0
Membership fee $504 $0 $6179 $0 $10109 $0
Total sales revenue $277963 $314253 $250842 $325508 $265939 $335034
Cost
Inventory cost $2250 $18268 $2250 $17726 $2250 $17291
Delivery cost $9263 $0 $6304 $0 $5647 $0
Return cost $1009 $0 $859 $269 $909 $498
Acquisition cost $210461 $206068 $183391 $213750 $191932 $220662
Total Cost $222983 $224336 $192805 $231745 $200738 $238451
Profit
Cross-sale profit $3614 $25758 $3587 $24923 $3537 $24265
Total profit $58594 $115675 $61625 $118686 $68738 $120849
Ratio
Gross profit ratio 21.1% 36.8% 24.6% 36.5% 25.8% 36.1%
Inventory cost ratio 1.0% 8.1% 1.2% 7.6% 1.1% 7.3%
Delivery cost ratio 4.2% 0% 3.3% 0% 2.8% 2%
Return cost ratio 0.5% 0% 0.4% 0.1% 0.5% 0.2%

the model setting ((p0 − cp)/p0), which is lower than the profit ratio achieved by the
other two channels when the fulfillment strategies are optimized. Thus, the greater
the regular online sales, the lower the gross profit ratio.

As expected, increasing γ from 0.5 to 0.8 has exactly the opposite effect. It gives
the retailers the incentive to scale back channel operations and raise prices. This
would increase both the revenue and the profit. While the ratio of operating costs
(inventory and delivery), falls slightly.

5.3.3 General case with general hassle cost distribution
In this section, we adopt a more general hassle cost distribution, whose PDF takes a
quadratic form, i.e.,

fh(hs, hl) = a · h2
s + b · hs + c · h2

l + d · hl + e. (5.1)

To calibrate and solve the general model with such a hassle cost distribution, we
must employ the specialized algorithm developed in Chapter 4. Table 5.8 provides
the default values for the algorithmic parameters. Using the 87% in-store channel
market share of Retailer W, we set Hs = 0, Hs = 8, Hl = 11, and Hl = 30, with
a =-3.364868e-5, b =-1.345947e-4, c =-3.364868e-5, d =1.517556e-3, e =-8.121602e-3.
The distribution is visualized in Figure 5.5. Other input parameters to the model
remain the same.

Recall that, to avoid local maxima, we usually need to solve the general model
multiple times from different initial points. A simple strategy is to choose these
initial points randomly within the feasible set. However, we find a better strategy to
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Figure 5.5: The distribution of the hassle cost with a quadratic form PDF.

Table 5.8: The algorithm parameters that used for the general case.

IP U ϵ1 in Alg 1 ϵ2 in Alg 1 E ϵ1 in Alg 2 ϵ2 in Alg 2
values 10 1000 10−3 0.530 10 1.5 1000

Figure 5.6: The convergence pattern of the gradient ascent method applied to solve
Model A.
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guide the sampling of initial points based on certain heuristic rules identified through
experiments. One example is to avoid starting from a solution where the share of
the in-store channel is near zero for Model W. The opposite (e.g., regions where the
share of membership channel is zero) is true for Model A.

Figure 5.6 illustrates the pattern of convergence when applying the algorithm for
solving Model A. As seen in the plot, the objective function value climbs monotonically
by more than 10% compared to the initial value, and the algorithm achieved it within
1000 iterations. Note that monotonicity is not a feature of the model, but baked in
the design of the algorithm.

The main results are reported in Table 5.9. We see that the strategies for Re-
tailer A (the second column) and Retailer W (the third column) are different with
the general distribution. The membership channel is more profitable for Retailer A
which has over 70% market share. Retailer A charges a much higher membership fee
becomes, though it also provides a very high level of service (the same-day delivery
probability ym is close to 99%). Retailer A also charges a slightly higher (a difference
of about $1.2) price than Retailer W, employs nearly all store space for the in-store
channel, and satisfies all online shopping demand from the distribution center. Again,
this is largely dictated by the constraint of space.

From the third column, we can see that the membership fee charged by Retailer
W is extremely low (less than $1). Although almost all online shopping consumers
choose to buy the membership (thanks to the low membership premium), only less
than one-tenth of consumers’ needs can be met on time. All these online orders
are fulfilled from the distribution center. Since guaranteeing the minimum service
quality is a more realistic choice for retailers, we set ym ≥ 0.7 and ym ≥ 0.8, and
report the corresponding results in columns 4 and 5 of the table, respectively. As
the minimum membership service quality increases, the membership fee rises, and
all online shopping consumers migrate from the membership channel to the regular
online shopping channel and the in-store channel. Yet, the profit decreases only 1% in
this process. This suggests that, given the strength of the in-store channel, Retailer
W’s bottom line is not significantly affected by the online shopping channel strategies.
Interestingly, the total profit for both retailers increases compared to the uniform
distribution case� Retailer A’s profit rises by over 80%, and Retailer W gains more
than 25%. The reason for this discrepancy is that, since fewer customers are located
in the low waiting cost “areas” in Figure 4.3 and Figure 4.4, Retailers do not have to
put too much effort into reducing the number of customers lost to the normal online
channel, especially for Retailer A.

Finally, as a validation of the algorithm, we set a = b = c = d = 0, hs = Hs,
hl = Hl, hl = 0, qw = 0, p = p0 and keep ym as a constant. This degenerates
the general case with quadratic PDF to the special case examined in Section 5.3.1.
As expected, the optimal solution obtained by our algorithm in this case perfectly
matches the results reported in Table 5.5.
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Table 5.9: Optimal solutions of the general case with quadratic customer hetero-
geneity.

Retailer Retailer A Retailer W W with ym ≥ 0.7 W with ym ≥ 0.8

xs 0.1102 0.8549 0.8733 0.8733
xm 0.7087 0.1451 1.36E-06 0.0000
xo 0.1812 6.12E-06 0.1267 0.1267
qs 749.9976 6330.0884 6333.3325 6333.3320
qw 0.0031 0.1451 0.0024 0.0000
q 5115.6813 64.0800 0.0033 0.0000
p 67.9298 66.7222 66.6622 66.6620
r 15.5450 0.9326 13.0557 15.0000
ym 0.9873 0.0848 0.7000 0.8000
g 111824.7500 149462.6094 147786.6719 147786.6406



CHAPTER6
Conclusion

In this Chapter, we conclude the report by summarizing the main findings in Section
5.1 and touching upon several directions for future investigation in Section 5.2.

6.1 Summary of findings
We have created a model of omnichannel retail that allows us to explore the trade-
offs involved in making fulfillment decisions. One of the most surprising findings
from the base model – formulated as a Stackelberg game – is the lack of lower-level
Nash equilibrium that mimics a typical routing game seen in the transportation lit-
erature. We had expected that customers would distribute between the channels in
the same way travelers would between roads. This expectation, however, was not
borne out, despite our channels being indeed as congestible as roads, at least from
the mathematical point of view. The fundamental reason for this discrepancy is that
the retailer controls both channels, and will always adjust the fulfillment decisions so
that the channel with greater intrinsic profitability becomes the dominant channel.
Thus, absence of hard physical constraints, the optimal solution is always an all-or-
nothing distribution. This result sheds light on the important role that the physical
store space plays in driving fulfillment decisions in the base model. The mechanism is
straightforward: when this space becomes a scarce resource, the retailer is forced to
expand the alternative channel even if they prefer to have everyone visit their store.

Another interesting analytical result offered by the base model has to do with the
impact of providing inventory information to customers so that they can avoid stock-
out events. We found this information is a mixed blessing for the in-store channel,
depending on the magnitude of the cross-sale profits. The information will increase
the store’s appeal if and only if the profit generated from cross-sales is smaller than
from direct sales.

We calibrated the base model to roughly match the operations of Walmart and
Amazon in the U.S. on a 1/3000 scale. Walmart is used as the benchmark, in the
sense that its actual channel distribution is replicated by the model through the
calibration process. With Walmart as the benchmark, we found Amazon, which has
a more efficient delivery operation and a much smaller physical footprint, would prefer
an e-commerce-only fulfillment strategy. Amazon is also slightly less profitable than
Walmart, largely because it cannot leverage cross-sale benefits as much as Walmart



60 6 Conclusion

does. If our estimate of cross-sale benefit is accurate – a big IF for sure – brick-and-
mortar stores are going to be seen as important assets in the future of e-commerce.

Our sensitivity analysis of the base model shows fulfillment strategies are highly
sensitive to the cross-sale effect, the online order return rate, and the fuel price. Three
findings from the analysis are especially noteworthy. First, it establishes a minimum
cross-sale profit that would make the in-store channel an attractive option for the
retailer. We estimate this profit amounts to roughly 10% of the revenues from direct
sales. Second, for a retailer with a strong preference for the offline channel, a lower
online order return rate can hurt its profit. This paradoxical phenomenon arises
because the retailer is forced to lower the price in-store, hence taking a hit in profit,
in order to compete with its own membership channel enhanced by a lower return
rate. Third, a higher fuel price will reduce the appeal of the in-store channel because
customers must bear a higher cost when visiting the store. Interestingly, the retailer
will respond to a fuel price surge by charging less, not more, for the same-delivery
membership. To offset the loss, the retailer will reduce the delivery capacity, which
will in turn lower the level of service. Thus, customers will end up visiting stores less
frequently, paying less for delivery but enduring a worse experience.

We have also extended the basic model to allow for user heterogeneity and devel-
oped a specialized algorithm for the general model. While heterogeneity affects the
results considerably, it has not fundamentally altered the insights drawn from the
above analysis.

6.2 Future work
In the near future, this research can be extended at least in two directions. The first,
discussed in Section 6.2.1, concerns linking heterogeneity to where customers live,
which in turn allows us to explore the traffic impact of omnichannel retail. Section
6.2.2 outlines a plan to build and analyze an omnichannel model with heterogeneous
products.

6.2.1 Spatial heterogeneity and traffic impact
We propose to differentiate customers based on where they live relative to the store.
As we have discussed in the numerical experiments in Chapter 5, the distance from
the store is a dominating component in hs (i.e., the hassle cost associated with the
in-store channel). Since hs increases with the distance required to travel from a
customer’s home to the store, those who live closer to the store naturally find the
in-store channel more attractive. Thus, incorporating travel distance into the model
links retail decisions with the spatial structure of the city, as well as the distribution
of population. This feature allows us to examine not only the role of travel burden
on fulfillment strategies but also their traffic implications.
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6.2.2 Product heterogeneity
The models presented in previous chapters assume that there is only one generic
product with an identical gross profit margin (p0 − cp), physical size (as, aw), and
return rate (θ). As a consequence, the retailer’s fulfillment strategy is completely
independent of what types of products they sell. In reality, however, the assortment
and fulfillment decisions may vary with the product type. For example, bulky and
low-value products (e.g. groceries) may be easier to sell in-store than to deliver to
homes. On the other hand, the membership channel may be more efficient to fulfill
lightweight and high-value products like consumer electronics. Customers’ channel
preference also depends on product types1. They would go to the physical store if they
want to see and try the product in person, and this is reflected by the different return
rates for different products2. As omnichannel retail allows customers to seamlessly
migrate between channels, it is important for the retailer to anticipate customers’
product-dependent channel preferences when making fulfillment decisions.

One may consider an integrated product assortment and fulfillment optimization
problem that allocates different products to different channels while taking customers’
preferences into consideration. A natural starting point would be to add another
product into the base model, before extending it to include other features (e.g., spatial
and other heterogeneity) and more types of products.

1https://www.forbes.com/sites/blakemorgan/2019/10/17/15-reasons-customers-will-still-go-to-
stores-in-the-future/?sh=4c11d5505b3b

2https://www.envisionhorizons.com/blog/using-amazon-return-data-to-your-advantage-and-
reducing-return-rates
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